Ndoped carbon nanomaterials are durable catalysts for oxygen

更新时间:2024-05-30 00:23:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

RESEARCHARTICLE

ENERGYRESOURCES

2015?TheAuthors,somerightsreserved;N-dopedcarbonnanomaterialsaredurable

exclusivelicenseeAmericanAssociationfortheAdvancementofScience.DistributedcatalystsforoxygenreductionreactioninacidicunderaCreativeCommonsAttributionNon-CommercialLicense4.0(CCBY-NC).fuelcells

10.1126/sciadv.1400129

JianglanShui,MinWang,FengDu,LimingDai*

Theavailabilityoflow-cost,efficient,anddurablecatalystsforoxygenreductionreaction(ORR)isaprerequisiteforcommercializationofthefuelcelltechnology.Alongwithintensiveresearcheffortsofmorethanhalfacenturyindevelopingnonpreciousmetalcatalysts(NPMCs)toreplacetheexpensiveandscarceplatinum-basedcatalysts,anewclassofcarbon-based,low-cost,metal-freeORRcatalystswasdemonstratedtoshowsuperiorORRperformancetocommercialplatinumcatalysts,particularlyinalkalineelectrolytes.However,theirlarge-scalepracticalapplicationinmorepopularacidicpolymerelectrolytemembrane(PEM)fuelcellsremainedelusivebecausetheyareoftenfoundtobelesseffectiveinacidicelectrolytes,andnoattempthasbeenmadeforasinglePEMcelltest.Wedemonstratedthatrationallydesigned,metal-free,nitrogen-dopedcarbonnanotubesandtheirgraphenecompositesexhibitedsig-nificantlybetterlong-termoperationalstabilitiesandcomparablegravimetricpowerdensitieswithrespecttothebestNPMCinacidicPEMcells.Thisworkrepresentsamajorbreakthroughinremovingthebottleneckstotranslatelow-cost,metal-free,carbon-basedORRcatalyststocommercialreality,andopensavenuesforcleanenergygenerationfromaffordableanddurablefuelcells.

INTRODUCTION

AlongwithintensiveresearcheffortsofmorethanhalfacenturyinThemolecularoxygenreductionreaction(ORR)isimportanttomanydevelopingnonpreciousmetalORRcatalysts,anewclassofmetal-freefields,suchasenergyconversion(forexample,fuelcells,metal-airbat-ORRcatalystsbasedoncarbonnanomaterialshasbeendiscovered(1)teries,andsolarcells),corrosion,andbiology(1,2).Forfuelcellstogen-andattractedworldwideattention(15–33),which,asalternativeORRerateelectricitybyelectrochemicallyreducingoxygenandoxidizingfuelcatalysts,couldmarkedlyreducethecostandincreasetheefficiencyofintowater,cathodicoxygenreductionplaysanessentialroleinproducingfuelcells.Inparticular,itwasfoundthatverticallyalignednitrogen-dopedelectricityandisakeylimitingfactoronthefuelcellperformance(3–5).carbonnanotubeToconstructfuelcellsofpracticalsignificance,efficientcatalystsare?(VA-NCNT)arrayscanactasametal-freeelectrodetocatalyzea4eORRprocesswithathreetimeshigherelectrocatalyticrequiredtopromotetheORRatcathode(6–8).Traditionally,platinumactivityandbetterlong-termstabilitythancommerciallyavailablehasbeenregardedasthebestcatalystforfuelcells,althoughitstillsuffersplatinum/Celectrodes(forexample,C2-20,20%platinumonVulcanfrommultipledrawbacks,includingitssusceptibilitytotime-dependentXC-72R;E-TEK)inanalkalineelectrochemicalcell(1).Thesecarbon-driftandMeOHcrossoverandCOpoisoningeffects(4,9).However,basedmetal-freeORRcatalystsarealsofreefromtheCOpoisoningandthelarge-scalepracticalapplicationoffuelcellscannotberealizedifthemethanolcrossovereffects.

expensiveplatinum-basedelectrocatalystsforORRcannotbereplacedQuantummechanicscalculationswithB3LYPhybriddensityfunc-byotherefficient,low-cost,anddurableelectrodes.

tionaltheoryandsubsequentexperimentalobservationsindicatedthatCobaltphthalocyaninewasreportedastheORRelectrocatalystinal-thecarbonatomsadjacenttonitrogendopantsintheNCNTstructurekalineelectrolytesin1964(5,10).Sincethen,thesearchfornonprecioushadasubstantiallyhighpositivechargedensitytocounterbalancethemetalcatalysts(NPMCs)withtransitionmetal/nitrogen/carbon(M-Nx/C,strongelectronicaffinityofthenitrogenatom(1).Aredoxcyclingpro-typicallyx=2or4,M=Co,Fe,Ni,Mn)complexcatalyticsitesaslow-cessreducedthecarbonatomsthatnaturallyexistinanoxidizedform,costalternativestoPtforelectrochemicalreductionofoxygeninfuelcellsfollowedbyreoxidationofthereducedcarbonatomstotheirpreferredhasattractedlong-terminterest.AlthoughtremendousprogresshasbeenoxidizedstateuponOmadeandafewrecentlyreportedNPMCsshowelectrocatalyticper-2absorptionandreduction,leadingtoareducedORRpotential.Furthermore,theNdoping–inducedchargetransferformancecomparabletothatofPt(11–14),mostoftheNPMCsarestillfromadjacentcarbonatomscouldchangethechemisorptionmodetooexpensiveand/orfarawayfromsatisfactionindurabilityforpracticalofOapplications.ThoseNPMCsofhighcatalyticactivitiesoftenexhibitfast2fromanusualend-onadsorption(Paulingmodel)atthepureCNTsurfacetoaside-onadsorption(Yeagermodel)ofOdecayundersomewhatchallengingtesting/operationconditions,suchastoeffectivelyweakentheO-Obondingfor2ontotheNCNTelectrodeefficientataconstantvoltageof0.5Vwithpureoxygenascathodefuel(11,13),andORR(1).Hence,dopingcarbonnanomaterialswithheteroatomsasrelativelygooddurabilityhasonlybeenobservedunderlessefficientintheNCNTelectrodescouldefficientlycreatethemetal-freeactiveworkingconditionswitharelativelylowpotential(forexample,0.4V)sitesforelectrochemicalreductionofO2.

and/ordilutedoxygen(air)asthecathodefuel(14).

Recentworldwideresearchactivities(15–33)inthisexcitingfieldhavenotonlyconfirmedtheabovefindingsbutalsofurtherprovedthatCenterofAdvancedScienceandEngineeringforCarbon(Case4Carbon),Departmentthedoping-inducedchargetransferhaslargeimpactonthedesign/ofMacromolecularScienceEngineering,CaseSchoolofEngineering,CaseWesterndevelopmentofnewmetal-freeelectrocatalyticmaterials,includingvar-ReserveUniversity,10900EuclidAvenue,Cleveland,OH44106,USA.iousheteroatom-dopedCNTs(1,19),graphene(16,20,21),andgraph-*Correspondingauthor:E-mail:liming.dai@case.edu

ite(22–28)forfuelcellandmanyotherapplications(29–31).High

Shuietal.Sci.Adv.2015;1:e140012927February2015

1of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE

electrocatalyticactivitycomparableorevensuperiortocommercialPt/CetchingoffthepurifiedVA-NCNTarrayfromtheSiwafersubstrateinelectrodesandexcellenttolerancetoMeOHcrossoverandCOpoi-aqueoushydrogenfluoride[10weightpercent(wt%)],rinsingitcopiouslysoningeffectshavebeendemonstratedformanyofthecarbon-basedwithdeionizedwater,transferringitontoagasdiffusionlayer[GDL;Car-metal-freeORRcatalystsinelectrochemicalhalf-cellswithalkalineelec-bonMicro-porousLayer(CMPL),ElectroChemInc.],anddrop-coatingtrolytes.Nevertheless,thelarge-scaleapplicationsofthecarbon-basedwithasulfonatedtetrafluoroethylene-basedionomer“Nafion”(DuPont)metal-freeORRcatalystsinpracticalfuelcellscannotberealizediftheyasbinderandelectrolyte,whichwasthenassembledwithaPt/C-coateddonothaveanadequatelong-termdurabilityandhighORRperformanceGDLastheanodeandanintermediatelayerofproton-conductiveinacidicpolymerelectrolytemembrane(PEM)fuelcells,whichcurrentlymembrane(NafionN211,DuPont)astheseparator(seetheSupple-serveasthemainstreamfuelcelltechnologyofgreatpotentialforlarge-mentaryMaterialsfordetailedpreparationandfig.S4fortheMEAscaleapplicationsinbothtransportandstationarysystems(9).Asyet,cross-sectionimages).AscanbeseeninFig.1(AtoC)andfig.S4,thehowever,theperformanceevaluation(forexample,electrocatalyticac-NCNTORRcatalystwithintheMEAthusproducedlargelyretaineditstivityandlong-termoperationalstability)ofcarbon-basedmetal-freeverticalalignment.

ORRcatalystsinactualPEMfuelcellshasbeenlargelyignored.ThisisTheresultingMEAcontainingtheVA-NCNTmetal-freeORRelec-presumablybecausecarbon-basedmetal-freeORRcatalystsareoftentrocatalystswasevaluatedinanacidicPEMfuelcelloperatingwiththefoundtobelesseffectiveinacidicelectrolyteswithrespecttoalkalineNafionelectrolyteandpureH2/O2gases.Tostartwith,thePEMfuelcellmedia,anditisquitechallengingtomakethemsufficientlyeffectivewasactivatedafter100scanningcyclesfromopencircuitpotentialforsingle-celltestinginacidicPEMfuelcells.

(OCV)to~0.1V(Fig.1D).Tooursurprise,aconsistentpolarizationper-Inspiteofthis,wedemonstratedherethatboththeVA-NCNTarrayformancewasobservedformorethan5100scanningcycles,indicat-andarationallydesignednitrogen-dopedgraphene/CNTcompositeingastableelectrocatalyticperformanceeveninacidundertheharsh(N-G-CNT)asthecathodecatalystsinacidicPEMfuelcellsexhibitedworkingcondition.Thus,N-Ccentersinthecarbon-basedmetal-freecat-remarkablyhighgravimetriccurrentdensitycomparabletothemostalystsseemtobemorestablethanthetransitionmetalactivesitesinactiveNPMCs.Becausecarbonismuchmoreanti-corrosivetoacidsNPMCsinPEMfuelcells(34,35).Therelativelypoorpolarizationperform-thanmosttransitionmetals,theVA-NCNTarrayandN-G-CNTcom-anceseeninFig.1Dforthefirst10cyclesis,mostprobably,duetotheweakpositefurthershowedasignificantlydurableperformance,evenwithelectrode-electrolyteinteractionontheas-preparedhydrophobic

pureH2/O2gases,inacidicPEMfuelcells,outperformingtheirNPMCcounterparts.Therefore,carbon-basedmetal-freecata-lystsholdgreatpotentialaslow-cost,effi-cient,anddurableORRcatalyststoreplacePtinpracticalPEMfuelcells.

RESULTS

VA-NCNTarrayshavebeenpreviouslyreportedtoshowexcellentORRperform-ance(1),evensuperiortothecommerciallyavailablePt/Celectrodes,inelectrochem-icalhalf-cellswithalkalineelectrolytes,asalsoconfirmedbytheVA-NCNTsusedinthisstudy(figs.S1toS3).TocarryouttheperformanceevaluationofVA-NCNTsinPEMfuelcells,wemadetheVA-NCNTarrays(80mminheight,?2asurfacepackingdensityof0.16mgcm)intoamembraneelectrodeassembly(MEA)atthehighestal-lowablecatalystloadingof0.16mgcm?2.Figure1schematicallyshowsproceduresfortheMEApreparation(Fig.1A),alongwithatypicalscanningelectronmicroscopic(SEM)imageofthestartingVA-NCNTar-ray(Fig.1B)andaphotographicimageofthenewlydevelopedMEA(Fig.1C),whereasFig.1.FabricationofMEAofVA-NCNTarraysanditsperformanceinaPEMfuelcell.(A)SchematictheMEAfabricationdetailsaregiveninthedrawingsforthefabricationofMEAfromVA-NCNTarrays(0.16mgcm?2)andtheelectrochemicaloxidationSupplementaryMaterials.Briefly,wefirsttoremoveresidueFe.C.E.,counterelectrode;R.E.,referenceelectrode;W.E.,workingelectrode.(B)TypicalperformedtheelectrochemicaloxidationSEMimageoftheVA-NCNTarray.(C)DigitalphotoimageoftheusedMEAafterdurabilitytestwiththecross-inHsectionSEMimagesshownintheinserts.(D)Polarizationcurvesasthefunctionofthearealcurrentdensity2SO4toremoveFeresidue,ifany,intheVA-NCNTsmadefrompyrolysisofafteraccelerateddegradationbyrepeatedlyscanningthecellfromOCVto0.1Vattherateof10mAs?1.(E)Polarizationandpowerdensityasthefunctionofthegravimetriccurrentdensity.Cathodecatalystloadingiron(II)phthalocyanine(1),followedby

0.16mgcm?2,Nafion/VA-NCNT=1/1.H2/O2:80°C,100%relativehumidity,2-barbackpressure.

Shuietal.Sci.Adv.2015;1:e1400129

27February2015

2of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE

VA-NCNTelectrode,whichbecamehydrophilicuponelectrochemicalEmmett-Teller)surfacearea,1270m2g?1;KetjenblackEC-600JD]andactivationduringthesubsequentpolarizationcycles(36).FortheVA-NCNT375mgofNafionsolution(5%)in1.5mlofdeionizedwaterandiso-MEA,significantlyhighgravimetriccurrentdensitieswereobserved:35Ag?1propanolmixture(volumeratio=1:2).Thereafter,theinkwassonicatedat0.8V,145Ag?1at0.6V,and1550Ag?1at0.2V(Fig.1E).Ascanalsofor10minandstirredovernight,thenpaintedontoa5-cm2GDLasthebeseeninFig.1E,thepeakpowerdensitywas320Wg?1forourVA-NCNTcathodeelectrode,andassembledintoaMEAwithaPt/C-coatedGDLMEA,outperformingorcomparabletoeventhemostactiveNPMCcat-astheanodeandanintermediatelayerofproton-conductivemembranealysts(Table1)(11).

(NafionN211,DuPont)astheseparatorforsubsequenttesting(fig.S6).AsabuildingblockforCNTs,thetwo-dimensional(2D)singleSeveralsynergisticeffectscanarisefromtheabovefabricationprocesstoatomiccarbonsheetofgraphenewithalargesurfaceareaandpeculiarmaximizetheutilizationofcatalystsitesintheN-G-CNTcomposite:(i)electronicpropertiesisanattractivecandidateforpotentialusesinN-GcanpreventN-CNTsfromtheformationofthebundlestructuremanyareaswhereCNTshavebeenexploited.Thus,heteroatom-dopedtofacilitatethedispersionofN-CNTsbyanchoringindividualN-graphenehasquicklyemergedasanotherclassofinterestingcarbo-CNTsonthegraphenesheetsviathestrongp-pstackinginteractionnaceousmetal-freeORRcatalysts(16)soonafterthediscoveryof(fig.S5,AtoD);(ii)N-CNTscanalsoeffectivelypreventtheN-GsheetselectrocatalyticactivityofVA-NCNTs(1).SuperiortoCNTs,theone-fromrestackingbydispersingCNTsonthegraphenebasalplanetoatom-thickgraphenesheetshaveallconstituentcarbonatomsatthemakemorerigidcurvedN-G-CNTsheetsthantheN-Gsheets(fig.S5,surfacetoenhancethesurfaceareaanda2DplanargeometrytofurtherCtoF);and(iii)theadditionofcarbonblack(Ketjenblack)cannotfacilitateelectrontransport(37),andhenceveryeffectiveelectrocat-onlyfurtherseparateN-G-CNTsheetsinthecatalystlayerbutalsoin-alysis.Althoughgraphenesheetswithalargesurfaceareaandexcel-ducecontinuedporousmultichannelpathwaysbetweentheN-G-CNTlentchargetransportpropertiesareidealelectrocatalyticmaterialsforsheetsforefficientO2diffusion(Fig.2).Acomparisonoffig.S6FwithORRafterdopingwithappropriateheteroatoms(forexample,B,S,N,fig.S6Cindicatesthattheintroductionofcarbonblackparticlesledtoand/orP)(16,20,38),muchofthegraphenesurfaceareaandtheas-aporousnetworkstructurefortheN-G-CNT/KBcatalystlayer,facili-sociatedcatalystsitesarelostbecauseofrestackingviathestrongp-ptatingtheO2diffusion(seealso,Fig.2,AtoD).BETmeasurementsoninteractionifthegraphenesheetsarenotphysicallyseparatedtopreservetheelectrodesshowedthata5-cm2porouscathodeN-G-CNT/KB@GDLthehighsurfaceareaintrinsicallyassociatedwithindividualgraphenehasasurfaceareaof155m2g?1(or1161m2g?1aftertakingofftheweightsheets.Alongwithothers(37,39),wehaveprepared3Dgraphene-CNTofGDLandNafion)andasignificantnumberofporesfrommicro-toself-assemblies(dopedwithorwithoutheteroatoms)oflargesurface/macrosizes(Fig.2,EandF).Incontrast,adensecathodeN-G-CNT@GDLinterfaceareasandwell-definedporousnetworkstructuresaselectrodewithoutinterspersedcarbonblackparticleshasasurfaceareaaslowmaterialswithfastiondiffusionandefficientelectrontransportforen-as16cm2g?1withnegligibleporevolume.Thepresenceofporesinergyconversionandstorage(31,40–42),includingmetal-freeORRcat-Fig.2(CandD)couldfacilitatethemasstransferofO2gasintheporousalysts(43).

N-G-CNT/KBcatalystlayer(Fig.2G)withrespecttothedenselypackedBecauseexcellentORRperformance,particularlyinalkalinemedia,N-G-CNTsheets(Fig.2,AandB)withouttheintercalatedcarbonblackhasalsobeendemonstratedforgraphene-basedmetal-freeORRcata-(Fig.2H).

lysts(17,43),itishighlydesirabletoalsoevaluatetheirperformanceinBeforethesingle-cellperformanceevaluation,wecarriedoutthero-actualPEMfuelcellsinacidicmedia.Forthispurpose,wefirstpreparedtatingdiscelectrode(RDE)androtatingring-discelectrode(RRDE)metal-freegrapheneoxide(GO)suspensionbythemodifiedHummers’testsforthenewlydevelopedN-G-CNTmetal-freecatalystinamethod(31),whichwasthenmixedwithoxidizedCNTsuspension,three-electrodeelectrochemicalcell.Figure3AreproducestypicalcyclicpreparedfromcommerciallyavailablenonalignedmultiwalledCNTsvoltammetric(CV)curvesoftheN-G-CNT,showingalargecathodic(BaytubesC150HP,BayerMaterialScience)afterpurificationtore-peakat0.8VinO2-saturated0.1MKOHsolution,butnotN2-saturatedmovemetalresidues,toproducemetal-freeporousN-dopedgrapheneelectrolyte.TheonsetpotentialoftheN-G-CNTisashighas1.08V,andCNTcomposites(N-G-CNT)throughfreeze-drying,followedbynearly80mVhigherthanthatofPt/C(Fig.3B).Half-wavepotentialannealingat800°CinNHoftheN-G-CNTis0.87V,30mVhigherthanthatofPt/C.Therefore,detailsandfig.S5).3for3hours(seetheSupplementaryMate-rialsforTheN-G-CNT–basedcatalystinkforMEAstheN-G-CNTshowsexcellentelectrocatalyticperformancein0.1Mwasthenpreparedbymixing2.5mgofN-G-CNTcatalystwith10mgKOH,evenbetterthanthecommercialPt/Celectrode(C2-20,20%ofcarbonblackparticles[primaryparticleradius,34nm;BET(Brunauer-platinumonVulcanXC-72R;E-TEK),viaaone-step4e?ORRprocess

Table1.Thegravimetricactivitiesofvarioustransitionmetal–derivedNPMCscomparedwiththemetal-freeVA-NCNTandN-G-CNT+KBinPEMfuelcells.Allthedatainthetablehavealsobeenscaledbytheelectrodesurfacearea.Materials

Currentat0.8V

Currentat0.2V

Peakpowerdensity

Catalystloading-H2back(Ag?1)

(Ag?1)

(Wg?1)

(mgcm?2O2)

pressure(bars)

Reference

FeCo/N/C1570020021.0(14)Fe/N/C8/100800/2500233/4003.9/0.90.5(11)Fe/N/C153258041.3(45)VA-NCNT3515503200.161.5ThisworkN-G-CNT+KB

30

1500

300

0.5

1.5

Thiswork

Shuietal.Sci.Adv.2015;1:e140012927February20153of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE

Fig.2.MorphologicalfeaturesoftheN-G-CNTelectrodeswithandwithoutvolumedistributions(F)ofapieceof5-cm2GDL,GDLwithKB(2mgcm?2theadditionofKetjenblack.(AtoD)Cross-sectionSEMimagesof(AandB)?2),GDLwithN-G-CNT(0.5mgcm),andGDLwithN-G-CNT/KB(0.5/2mgcm?2)thedenselypackedcatalystlayerofN-G-CNT/Nafion(0.5/0.5mgcm?2)andasindicatedinthefigures.(GandH)SchematicdrawingsoftheMEAcatalyst(CandD)theporouscatalystlayerofN-G-CNT/KB/Nafion(0.5/2/2.5mgcm?2).layercrosssection,showingthatO2efficientlydiffusedthroughthecarbonPurplearrowsin(D)indicatetheparallellyseparatedN-G-CNTsheetswithin-blackseparatedN-G-CNTsheets(G)butnotthedenselypackedN-G-CNTterdispersedporousKBagglomerates.(EandF)BETsurfaceareas(E)andpore

sheets(H).

(fig.S7)withabetterstabilityaswellasahighertolerancetoMeOHcrossoverandCOpoisoningeffectsthanthePtcatalyst(fig.S8).Asfarasweareaware,thesere-sultsarethehighestrecordsformetal-freegrapheneandCNTORRcatalysts.Asex-pected,theN-G-CNTcompositealsoexhib-itedmuchbetterORRperformancethanthatofN-CNTandN-Gcatalystsinboththealkaline(Fig.3C)andacidicmedia(Fig.3D)becauseofitsuniquefoam-like3Darchitectureformedinthethincom-positelayerontheRDEelectrodeevenwith-outtheadditionofcarbonblackintheabsenceofmechanicalcompression(fig.S9,videinfra)because3Dcarbonnetworkshavebeenpreviouslydemonstratedtofa-cilitateelectrocatalyticactivities(31,43).MoredetailedORRperformanceoftheN-G-CNTinacidicmediawithrespecttoFe/N/CandPt/Ccanbefoundinfig.S10.TheaboveresultsindicatethatN-G-CNTholdsgreatpotentialforoxygenre-ductioninpracticalfuelcells.Therefore,wefurthercarriedouttheperformanceeval-Fig.3.Electrocatalyticactivitiesofthecarbon-basedmetal-freecatalystsinhalf-celltests.(A)CVsoftheuationonMEAsbasedontheN-G-CNTN-G-CNTinO2-orN2-saturated0.1MKOH.(B)Linearsweepvoltammetry(LSV)curvesoftheN-G-CNTcom-ina5-cm2PEMfuelcellwithpureHparedwithPt/C(20%)electrocatalystbyRRDEinO2-saturated0.1MKOHsolutionatascanrateof10mVs?1asfuelgasesat80°C.andarotationspeedof1600rpm.(CandD)LSVcurvesoftheN-GandN-CNTcomparedwiththeN-G-CNTin?2Atatypicalcatalyst2/O2loadingof2mgcm(11–14,44),thecellO2-saturated0.1MKOH(C)and0.1MHClO4(D).

limitingcurrentwasaslowas700mAcm?2,

Shuietal.Sci.Adv.2015;1:e1400129

27February2015

4of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE

althoughthecellOCVreached0.97V(fig.S11A).Wefoundthattheadditionofcar-bonblack(KB,2mgcm?2)intotheN-G-CNTcatalystlayerintheMEAcaused~85%improvementonthedeliveredcur-rentdensityatalowvoltagerange(<0.4V),althoughKBitselfhadnegligibleelectro-catalyticactivity(fig.S11A).Theaboveob-servedenhancementinthecurrentoutputcanbeattributedtotheKB-inducedporousnetworkformationtoenhancetheO(Fig.2,DandG,andfig.S6F)2dif-fusionbe-causetheporosityseeninfig.S9Ffortheas-castN-G-CNTsingleelectrodehasbeensignificantlyreducedwithinthecorre-spondingMEA(fig.S6C)preparedundermechanicalpressing(seetheSupplemen-taryMaterialsfortheMEApreparation).Theimprovedelectrocatalyticperform-ancewasalsosupportedbythereducedcellimpedancefortheN-G-CNT+KBwithrespecttoitsN-G-CNTcounterpart(fig.S11B).

ThecellperformancesattheN-G-CNTloading?of20.5and2mgcm?2plus

KB(2mgcm)arecomparable(Fig.4A),indicatingamarkedactivitysuppressionatFig.4.PoweranddurabilityperformanceofN-G-CNTwiththe?2additionofKBinPEMfuelcells.(A)highcatalystloadingevenwithcarbonPolarizationcurvesofN-G-CNTwithloadings:2,0.5,or0.15mgcmplusKB(2mgcm?2the)foreachcathode.blackdispersing.Whenthecatalystload-Theweightratioof(N-G-CNT/KB)/Nafion=1/1.(B)Cellpolarizationandpowerdensityasthefunctionofingwasfurtherreducedto0.15mgcm?2,gravimetriccurrentfortheN-G-CNT/KB(0.5/2mgcm?2)withtheweightratioof(N-G-CNT/KB)/Nafion=1/1.(C)Durabilityofthemetal-freeN-G-CNTinaPEMfuelcellmeasuredat0.5VcomparedwithaFe/N/Ccat-however,thecatalyticsitesinthecathodealyst(seetheSupplementaryMaterialsforpreparationdetails).CatalystloadingofN-G-CNT/KB(0.5mgcm?2)

werenotsufficienttosupportanormalandFe/N/C(0.5and2mgcm?2).Testcondition:H2/O2:80°C,100%relativehumidity,2-barbackpressure.polarizationcurve.Figure4Bshowsthegravimetricpolarizationandpowerden-sitycurvesfortheN-G-CNTinthepresenceofcarbonblack(N-G-theN-G-CNT+KBcatalystatbothlowandhighloadings(Fig.4CCNT/KB/Nafion=0.5:2:2.5mgcm?2),fromwhichacurrentof30Ag?1andfig.S14).at0.8V,alimitingcurrentof2000Ag?1at0.1V,andapeakpower

densityof300Wg?1wereobtained.Althoughmetal-freecatalystsusuallyexhibitedalowercatalyticactivitythandidNPMCsinRDEmea-DISCUSSIONsurements(45),theobservedgravimetricactivityoftheN-G-CNT+KBThefastperformancedropatthefirst20hoursfortheFe/N/Ccatalystiscomparabletohigh-performanceFe(Co)/N/Ccatalysts(Table1andwastypicalforNPMCs(5,11,45,46)becauseofdetrimentaleffectsoffig.S12,AtoC),attributabletothefullutilizationofcatalyticsitesintheacidicandstrongreductionenvironmentsonthemetalactivecen-therationallydesignedN-G-CNT+KBcatalystlayerwiththeenhancedtersatthePEMfuelcellcathode(34).BecausetheN-G-CNT+KBcat-multichannelO2pathways(Fig.2,DandG,andfig.S6F).The3Dmulti-alyticsitesarefreefrommetalnanoparticle(fig.S15),nosignificantchannelporousstructure,togetherwiththeuniquematerialshybrid-acidiccorrosionisenvisionedforthecarbonelectrodebecausecarbonization,makesthePEMfuelcellbasedontheN-G-CNT+KBcathodeismuchmoreanti-corrosivetoacidsthanmosttransitionmetals.There-toshowamuchbettercellperformancethandoitscounterpartswithfore,theobservedexcellentstabilitiesforbothN-G-CNT+KBandVA-thecathodemadefromeitheroftheconstituentcomponents(thatis,N-G+NCNTcathodesinPEMfuelcellsshouldbeanimportantintrinsic

KBandN-CNT+KB,respectively)(fig.S13).

characterforthecarbon-basedmetal-freecatalysts,facilitatingthemFinally,theN-G-CNT+KBwasfurthersubjectedtothedurabilityforalargevarietyofpracticalapplications.Theseresultsshowgreatpo-testintheacidicPEMfuelcellsataconstantvoltageof0.5Vwithpuretentialforcarbon-basedmetal-freecatalyststobeusedaslow-cost,H2/O2asfuelgases(Fig.4C)incomparisonwiththeFe/N/CNPMCefficient,anddurableORRcatalystsinpracticalPEMfuelcells.Further-(seetheSupplementaryMaterialsforpreparation).LikeVA-NCNT,more,theVA-NCNTandN-G-CNT+KBcatalystsusedinthisstudytheN-G-CNT+KBexhibitedanexcellentstabilitywitharelativelysharedsimilarfeaturesinthatN-dopedcarbonnanomaterialsweresmallcurrentdecay(~20Tcayover100hours;Fig.4C).Incontrast,usedforthehighORRelectrocatalyticactivities,andthattheporoustheFe/N/Ccatalystshowedaninitialsharpcurrentdecaywithatotalstructureswithalargesurfaceareawererationallydesignedforofabout75Tcayover100hoursatboththehigh(2mgcm?2)andenhancedelectrolyte/reactantdiffusion.Themethodologydevelopedlowloadings(0.5mgcm?2).Excellentdurabilitieswereobservedforherecanberegardedasageneralapproachforthedevelopmentof

Shuietal.Sci.Adv.2015;1:e1400129

27February2015

5of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016

RESEARCHARTICLE

alargevarietyofhigh-performance,low-cost,metal-freecatalystsforvariouspracticalenergydevices,particularlyinPEMfuelcells.

MATERIALSANDMETHODS

VA-NCNTwassynthesizedbypyrolysisofiron(II)phthalocyanineac-cordingtoourpreviouslypublishedprocedures(1).N-G-CNTcompositewassynthesizedbysequentiallycombiningamodifiedHummers’methodfortheGOfabrication(31),freeze-dryingamixtureofGOandoxidizedCNT,followedbyannealingat800°CinNHbefoundintheSupplementary3for3hours.ThepreparationdetailscanMaterials.ThetransitionmetalFe-derivedcontrolsample(Fe/N/C)wassynthesizedaccordingtoliteratures(11,46).Specifically,100mgofzeoliticimidazo-lateframeworks(ZIF8),togetherwith10mgoftris(1,10-phenanthroline)iron(II)perchlorateion,wasball-milledfor1hourandheatedinArat1000°Cfor1hourandthenat900°CunderNH3for15min.

TheelectrochemicalperformancesoftheaboveORRcatalystswerecharacterizedthrough(i)half-celltestsin0.1MKOHor0.1MHClO4electrolytesbyanRDEmethodand(ii)single-celltestswitha5-cm2MEAandpureHpressure.2/ODetailed2asfuelsat80°C,100%relativehumidity,and2-barbackelectrodefabricationandtestprocessesaredescribedintheSupplementaryMaterials.ThemorphologyandcompositioncharacterizationofthematerialsarealsogivenintheSup-plementaryMaterials.

SUPPLEMENTARYMATERIALS

Supplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/1/1/e1400129/DC1

Fig.S1.CharacterizationofVA-NCNTs.

Fig.S2.ElectrocatalyticactivitiesoftheVA-NCNTcatalystinalkalineelectrolyte(O2-saturated0.1MKOH)byhalf-celltests.

Fig.S3.ElectrocatalyticactivitiesoftheVA-NCNTcatalystinacidicelectrolyte(O2-saturated0.1MHClO4)byhalf-celltests.

Fig.S4.Typicalcross-sectionSEMimagesoftheGDLwiththeMEAofVA-NCNTsasthecath-odecatalystlayer,Nafionmembrane(N211)astheseparator,andPt/Castheanode.Fig.S5.SEM(A)andTEM(B)imagesofN-CNTbundles.

Fig.S6.Typicalcross-sectionSEMimagesoftheGDLswiththeMEAsof(AtoC)N-G-CNT(2mgcm?2)and(DtoF)N-G-CNT+KB(0.5+2mgcm?2)asthecathodecatalystlayers,respectively.

Fig.S7.Tafelplot(A)andelectrontransfernumber(B)fortheN-G-CNTandPt/C(20%)asthefunctionofelectrodepotentialbyRRDEinoxygen-saturated0.1MKOHsolutionatascanspeedof5mVs?1andarotationspeedof1600rpm.

Fig.S8.Long-timestabilityandtolerancetomethanol/carbonmonoxideofmetal-freecatalystN-G-CNT.

Fig.S9.SEMimagesofcatalystlayercrosssectionsusedinRDEmeasurements.

Fig.S10.Electrocatalyticactivitiesofthecarbon-basedmetal-freeN-G-CNTcatalystsinacidicelectrolyte(O2-saturated0.1MHClO4)byhalf-celltests.

Fig.S11.Optimizationofcathodecatalystlayercomposition.

Fig.S12.Single-cellperformancecomparisonbetweenN-G-CNTandFe/N/Ccatalystsatthesamecatalystlayercomposition:catalyst(0.5mgcm?2)/KB(2mgcm?2)/Nafion(2.5mgcm?2).Fig.S13.PolarizationcurvesoftheN-G-CNTandindividualcomponentsofN-GorN-CNT.Fig.S14.Durabilityofthecatalystlayercomposedofmetal-freeN-G-CNT(2mgcm?2)+KB(2mgcm?2)inaPEMfuelcellmeasuredat0.5V.Fig.S15.Themetal-freecharacterofN-G-CNTcatalyst.

REFERENCESANDNOTES

1.K.P.Gong,F.Du,Z.H.Xia,M.Durstock,L.M.Dai,Nitrogen-dopedcarbonnanotubearrayswithhighelectrocatalyticactivityforoxygenreduction.Science323,760–764(2009).2.J.L.Shui,N.K.Karan,M.Balasubramanian,S.Y.Li,D.J.Liu,Fe/N/CcompositeinLi–O2battery:Studiesofcatalyticstructureandactivitytowardoxygenevolutionreaction.J.Am.Chem.Soc.134,16654–16661(2012).

3.S.Basu,RecentTrendsinFuelCellScienceandTechnology(Springer,NewYork,2007).

Shuietal.Sci.Adv.2015;1:e140012927February20154.H.A.Gasteiger,S.S.Kocha,B.Sompalli,F.T.Wagner,ActivitybenchmarksandrequirementsforPt,Pt-alloy,andnon-PtoxygenreductioncatalystsforPEMFCs.Appl.Catal.BEnviron.56,9–35(2005).

5.F.Jaouen,J.Herranz,M.Lefèvre,J.P.Dodelet,U.I.Kramm,I.Herrmann,P.Bogdanoff,J.Maruyama,T.Nagaoka,A.Garsuch,J.R.Dahn,T.Olson,S.Pylypenko,P.Atanassov,E.A.Ustinov,Cross-laboratoryexperimentalstudyofnon-noble-metalelectrocatalystsfortheoxygenreductionreaction.ACSAppl.Mater.Inter.1,1623–1639(2009).

6.A.J.Appleby,Electrocatalysisofaqueousdioxygenreduction.J.Electroanal.Chem.357,117–179(1993).

7.R.Adzic,RecentAdvancesintheKineticsofOxygenReductioninElectrocatalysis(Wiley-VCH,NewYork,1998).

8.P.Somasundaran,EncyclopediaofSurfaceandColloidScience(Taylor&Francis,NewYork,ed.2,2006).

9.M.K.Debe,Electrocatalystapproachesandchallengesforautomotivefuelcells.Nature486,43–51(2012).

10.R.Jasinski,Anewfuelcellcathodecatalyst.Nature201,1212–1213(1964).

11.E.Proietti,F.Jaouen,M.Lefèvre,N.Larouche,J.Tian,J.Herranz,J.P.Dodelet,Iron-based

cathodecatalystwithenhancedpowerdensityinpolymerelectrolytemembranefuelcells.Nat.Commun.2,416(2011).

12.C.Chen,Y.Kang,Z.Huo,Z.Zhu,W.Huang,H.L.Xin,J.D.Snyder,D.Li,J.A.Herron,

M.Mavrikakis,M.Chi,K.L.More,Y.Li,N.M.Markovic,G.A.Somorjai,P.Yang,V.R.Stamenkovic,Highlycrystallinemultimetallicnanoframeswiththree-dimensionalelectrocatalyticsurfaces.Science343,1339–1343(2014).

13.M.Lefevre,E.Proietti,F.Jaouen,J.P.Dodelet,Iron-basedcatalystswithimprovedoxygen

reductionactivityinpolymerelectrolytefuelcells.Science324,71–74(2009).

14.G.Wu,K.L.More,C.M.Johnston,P.Zelenay,High-performanceelectrocatalystsforoxygen

reductionderivedfrompolyaniline,iron,andcobalt.Science332,443–447(2011).

15.S.B.Yang,X.L.Feng,X.C.Wang,K.Mullen,Graphene-basedcarbonnitridenanosheetsas

efficientmetal-freeelectrocatalystsforoxygenreductionreactions.Angew.Chem.Int.Ed.50,5339–5343(2011).

16.L.T.Qu,Y.Liu,J.B.Baek,L.M.Dai,Nitrogen-dopedgrapheneasefficientmetal-freeelec-trocatalystforoxygenreductioninfuelcells.ACSNano4,1321–1326(2010).

17.S.Wang,L.Zhang,Z.Xia,A.Roy,D.W.Chang,J.B.Baek,L.Dai,BCNgrapheneasefficient

metal-freeelectrocatalystfortheoxygenreductionreaction.Angew.Chem.Int.Ed.51,4209–4212(2012).

18.Y.Zheng,Y.Jiao,M.Jaroniec,Y.G.Jin,S.Z.Qiao,Nanostructuredmetal-free

electrochemicalcatalystsforhighlyefficientoxygenreduction.Small8,3550–3566(2012).19.L.Yang,S.Jiang,Y.Zhao,L.Zhu,S.Chen,X.Wang,Q.Wu,J.Ma,Y.Ma,Z.Hu,Boron-doped

carbonnanotubesasmetal-freeelectrocatalystsfortheoxygenreductionreaction.Angew.Chem.Int.Ed.50,7132–7135(2011).

20.C.Z.Zhu,S.J.Dong,Recentprogressingraphene-basednanomaterialsasadvancedelec-trocatalyststowardsoxygenreductionreaction.Nanoscale5,1753–1767(2013).

21.X.Q.Wang,J.S.Lee,Q.Zhu,J.Liu,Y.Wang,S.Dai,Ammonia-treatedorderedmesoporous

carbonsascatalyticmaterialsforoxygenreductionreaction.Chem.Mater.22,2178–2180(2010).

22.G.Liu,X.G.Li,J.W.Lee,B.N.Popov,Areviewofthedevelopmentofnitrogen-modified

carbon-basedcatalystsforoxygenreductionatUSC.Catal.Sci.Technol.1,207–217(2011).

23.R.A.Sidik,A.B.Anderson,N.P.Subramanian,S.P.Kumaraguru,B.N.Popov,O2reduction

ongraphiteandnitrogen-dopedgraphite:Experimentandtheory.J.Phys.Chem.B110,1787–1793(2006).

24.Z.W.Liu,F.Peng,H.J.Wang,H.Yu,W.X.Zheng,J.Yang,Phosphorus-dopedgraphite

layerswithhighelectrocatalyticactivityfortheO2reductioninanalkalinemedium.Angew.Chem.Int.Ed.50,3257–3261(2011).

25.I.Y.Jeon,H.J.Choi,M.J.Ju,I.T.Choi,K.Lim,J.Ko,H.K.Kim,J.C.Kim,J.J.Lee,D.Shin,

S.M.Jung,J.M.Seo,M.J.Kim,N.Park,L.Dai,J.B.Baek,Directnitrogenfixationattheedgesofgraphenenanoplateletsasefficientelectrocatalystsforenergyconversion.Sci.Rep.3,2260(2013).

26.I.Y.Jeon,H.J.Choi,M.Choi,J.M.Seo,S.M.Jung,M.J.Kim,S.Zhang,L.Zhang,Z.Xia,L.Dai,

N.Park,J.B.Baek,Facile,scalablesynthesisofedge-halogenatedgraphenenanoplateletsasefficientmetal-freeeletrocatalystsforoxygenreductionreaction.Sci.Rep.3,1810(2013).

27.I.Y.Jeon,S.Zhang,L.Zhang,H.J.Choi,J.M.Seo,Z.Xia,L.Dai,J.B.Baek,Edge-selectively

sulfurizedgraphenenanoplateletsasefficientmetal-freeelectrocatalystsforoxygenre-ductionreaction:Theelectronspineffect.Adv.Mater.25,6138–6145(2013).

28.I.Y.Jeon,H.J.Choi,S.M.Jung,J.M.Seo,M.J.Kim,L.Dai,J.B.Baek,Large-scalepro-ductionofedge-selectivelyfunctionalizedgraphenenanoplateletsviaballmillingandtheiruseasmetal-freeelectrocatalystsforoxygenreductionreaction.J.Am.Chem.Soc.135,1386–1393(2013).

29.Y.Li,J.Wang,X.Li,J.Liu,D.Geng,J.Yang,R.Li,X.Sun,Nitrogen-dopedcarbonnanotubes

ascathodeforlithium–airbatteries.Electrochem.Commun.13,668–672(2011).

6of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016RESEARCHARTICLE

30.J.L.Shui,F.Du,C.M.Xue,Q.Li,L.M.Dai,VerticallyalignedN-dopedcoral-likecarbonfiber

arraysasefficientairelectrodesforhigh-performancenonaqueousLi-O2batteries.ACSNano8,3015–3022(2014).

31.Y.Xue,J.Liu,H.Chen,R.Wang,D.Li,J.Qu,L.Dai,Nitrogen-dopedgraphenefoamsas

metal-freecounterelectrodesinhigh-performancedye-sensitizedsolarcells.Angew.Chem.Int.Ed.Engl.51,12124–12127(2012).

32.H.T.Chung,C.M.Johnstona,K.Artyushkovab,M.Ferrandonc,D.J.Myersc,P.Zelenay,

Cyanamide-derivednon-preciousmetalcatalystforoxygenreduction.Electrochem.Commun.12,1792–1795(2010).

33.C.H.Choi,M.W.Chung,H.C.Kwon,S.H.Park,S.I.Woo,B,N-andP,N-dopedgrapheneas

highlyactivecatalystsforoxygenreductionreactionsinacidicmedia.J.Mater.Chem.A1,3694–3699(2013).

34.Q.Wang,Z.Y.Zhou,Y.J.Lai,Y.You,J.G.Liu,X.L.Wu,E.Terefe,C.Chen,L.Song,M.Rauf,N.Tian,

S.G.Sun,Phenylenediamine-basedFeNx/Ccatalystwithhighactivityforoxygenreductioninacidmediumanditsactive-siteprobing.J.Am.Chem.Soc.136,10882–10885(2014).

35.Y.Jiao,Y.Zheng,M.Jaroniec,S.Z.Qiao,OriginoftheElectrocatalyticoxygenreduction

activityofgraphene-basedcatalysts:Aroadmaptoachievethebestperformance.J.Am.Chem.Soc.136,4394–4403(2014).

36.L.Li,Y.C.Xing,Electrochemicaldurabilityofcarbonnanotubesinnoncatalyzedand

catalyzedoxidations.J.Electrochem.Soc.153,A1823–A1828(2006).

37.L.M.Dai,Functionalizationofgrapheneforefficientenergyconversionandstorage.Acc.

Chem.Res.46,31–42(2013),andreferencescitedtherein.

38.Z.Yang,Z.Yao,G.Li,G.Fang,H.Nie,Z.Liu,X.Zhou,X.Chen,S.Huang,Sulfur-dopedgrapheneas

anefficientmetal-freecathodecatalystforoxygenreduction.ACSNano6,205–211(2012).39.T.Y.Ma,S.Dai,M.Jaroniec,S.Z.Qiao,Graphiticcarbonnitridenanosheet–carbonnano-tubethree-dimensionalporouscompositesashigh-performanceoxygenevolutionelec-trocatalysts.Angew.Chem.Int.Ed.53,7281–7285(2014).

40.F.Du,D.Yu,L.Dai,S.Ganguli,V.Varshney,A.K.Roy,Preparationoftunable3Dpillaredcarbon

nanotube-graphenenetworksforhigh-performancecapacitance.Chem.Mater.23,4810–4816(2011).

Shuietal.Sci.Adv.2015;1:e140012927February201541.D.S.Yu,L.M.Dai,Self-assembledgraphene/carbonnanotubehybridfilmsforsupercapacitors.

J.Phys.Chem.Lett.1,467–470(2010).

42.D.Yu,K.Goh,H.Wang,L.Wei,W.Jiang,Q.Zhang,L.Dai,Y.Chen,Scalablesynthesisof

hierarchically-structuredcarbonnanotube-graphenefibresforcapacitiveenergystorage.Nat.Nanotechnol.9,555–562(2014).

43.Y.Xue,D.Yu,L.Dai,R.Wang,D.Li,A.Roy,F.Lu,H.Chen,Y.Liu,J.Qu,Three-dimensionalB,

N-dopedgraphenefoamasmetal-freecatalystsforoxygenreductionreaction.Phys.Chem.Chem.Phys.15,12220–12226(2013).

44.G.Wu,C.S.Dai,D.L.Wang,D.Y.Li,N.Li,Nitrogen-dopedmagneticonion-likecarbon

assupportforPtparticlesinahybridcathodecatalystforfuelcells.J.Mater.Chem.20,3059–3068(2010).

45.G.Wu,K.L.More,P.Xu,H.L.Wang,M.Ferrandon,A.J.Kropf,D.J.Myers,S.Ma,

C.M.Johnston,P.Zelenay,Acarbon-nanotube-supportedgraphene-richnon-preciousmetaloxygenreductioncatalystwithenhancedperformancedurability.Chem.Commun.49,3291–3293(2013).

46.D.Zhao,J.L.Shui,L.R.Grabstanowicz,C.Chen,S.M.Commet,T.Xu,J.Lu,D.J.Liu,Highly

efficientnon-preciousmetalelectrocatalystspreparedfromone-potsynthesizedzeoliticimidazolateframeworks.Adv.Mater.26,1093–1097(2014).Acknowledgments:WethankthesupportfromtheNationalScienceFoundation(AcceleratingInnovationResearch-IIP-1343270andCMMI-1266295).

Submitted20November2014Accepted24January2015Published27February201510.1126/sciadv.1400129

Citation:Shuietal.,N-dopedcarbonnanomaterialsaredurablecatalystsforoxygenreductionreactioninacidicfuelcells.Sci.Adv.1,e1400129(2015).

7of7

Downloaded from http://advances.sciencemag.org/ on January 28, 2016N-doped carbon nanomaterials are durable catalysts foroxygen reduction reaction in acidic fuel cells

Jianglan Shui, Min Wang, Feng Du and Liming Dai (February 27,2015)

Sci Adv 2015, 1:.

doi: 10.1126/sciadv.1400129

This article is publisher under a Creative Commons license. The specific license under whichthis article is published is noted on the first page.

For articles published under CC BY licenses, you may freely distribute, adapt, or reuse thearticle, including for commercial purposes, provided you give proper attribution.

For articles published under CC BY-NC licenses, you may distribute, adapt, or reuse the articlefor non-commerical purposes. Commercial use requires prior permission from the American Association for the Advancement of Science (AAAS). You may request permission by clicking here.

The following resources related to this article are available online at

http://advances.sciencemag.org. (This information is current as of January 28, 2016):Updated information and services, including high-resolution figures, can be found in theonline version of this article at:

http://advances.sciencemag.org/content/1/1/e1400129.full

Supporting Online Material can be found at:

http://advances.sciencemag.org/content/suppl/2015/02/25/1.1.e1400129.DC1This article cites 41 articles,5 of which you can be accessed free: http://advances.sciencemag.org/content/1/1/e1400129#BIBL

Science Advancespublished by the American Association for the Advancement of Science (AAAS), 1200 New (ISSN 2375-2548) publishes new articles weekly. The journal is

York Avenue NW, Washington, DC 20005. Copyright is held by the Authors unless statedotherwise. AAAS is the exclusive licensee. The title Science Advances is a registered trademark of AAAS

Downloaded from http://advances.sciencemag.org/ on January 28, 2016

本文来源:https://www.bwwdw.com/article/4ec6.html

Top