调和不等式及均值不等式

“调和不等式及均值不等式”相关的资料有哪些?“调和不等式及均值不等式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“调和不等式及均值不等式”相关范文大全或资料大全,欢迎大家分享。

均值不等式证明

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

第1篇:不等式证明,均值不等式

1、设a,b?R,求证:ab?(ab)?aba?b2?abba

2、已知a,b,c是不全相等的正数,求证:a(b2?c2)?b(c2?a2)?c(a2?b2)>6abc

3、(a?b?c)(1119??)? a?bb?cc?a

24、设a,b?R?,且a?b?1,求证:(a?)?(b?)?

5、若a?b?1,求证:asinx?bcosx?

16、已知a?b?1,求证:a?b?

7、a,b,c,d?R求证:1<?441a21b225 2221 8abcd+++<2 a?b?db?c?ac?d?bd?a?c

111

18、求证2?2?2???2<2 123n

1111????<1

9、求证:?2n?1n?22n

10、求下列函数的最值

(1) 已知x>0,求y?2?x?

(2) 已知x>2,求y?x?4的最大值(-2) x1的最小值(4) x?

2111(3) 已知0<x<,求y?x(1?2x)的最大值() 2216

11、若正数a,b满足ab?(a?b)?1则a?b的最小值是()

(2?2333)

12、已知正数a,b求使不等式(a?b)?k(a?b)成立的最小k值为()(4)

1

3、求函数y?

14、二次函数f(x)?x?ax?x?a的两根x1,x2

均值不等式的应用

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

均值不等式的应用

刘艺

【摘要】摘要:本文旨在探究均值不等式的应用.即利用均值不等式去解决一类关于n次多项式的不等式证明问题。

【期刊名称】教育教学论坛

【年(卷),期】2011(000)017

【总页数】3

【关键词】均值不等式;n次多项式;基本元素

设a1,a2,…,an∈R+,n∈N且n>1,则

(当且仅当a1=a2=…=an,时,“=”成立)

利用(*)式,能解决数学中许多诸如不等式、函数最值等问题。本文重在探究如何应用(*)式去解决一类关于n次多项式的不等式的证明问题.

为研究问题方便,不妨称满足(*)式中的a1,a2,…,an为基本元素,由这些元素构成的和式a1+a2+…+an与积式a1a2…an称为基本式.

一、所涉及的命题中,明显含有a1+a2+…+an和a1a2…an等基本式,可选用a1,a2,…,an为基本元素,直接利用(*)式证明例1:设a1,a2,…,an∈R+求证(a1+a2+…+an)

分析:由于题目中明显含有和式(a1+a2+…+an)与,故可选ai和为基本元素,由(*)式着手解决。

简证:选ai和为基本元素,由均值不等式可得

证毕.

例2:设a1,a2,…,an为不相等的正数,且S=a1+a2+…+an,

能力培优 不等式及不等式组

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

(一)不等式概念和性质错解例析

初学不等式,由于对概念及性质理解不够深刻,有些同学常出现一些错误,现举例分析,望能引以为戒

一、理解概念不透致错

例1、下列给出四个式子,

①x>2 ②a≠0 ③5<3 ④a≥b 其中是不等式的是( )

A、①④ B、①②④ C、①③④ D、①②③④

错解、选A

分析、不等式是指形式上用“<”、“>”、“≤”、“≥”、“≠”连接的式子,不受其是否成立的影响,5<3是不等式,只不过这个不等式不成立,另外a≠0也是不等式,因为“≠”也是不等号, 正解、选D

二、符号意义不清致错 例2、下列不等式

①2a>a ②a2+1>0 ③8≥6 ④x2≥0 一定成立的是( )

A、②④ B、② C、①②④ D、②③④

错解、选A

分析、导致本题错误的原因是对“≥”理解不正确,“≥”的意义是“>”或“=”,有选择功能,二者成立之一即可,事实上也只能二者取一,不等号两边的量不会既“>”又“=”,所以,对8≥6的理解应是“8大于6”,对x2≥0的理解应是,“当x=0时,x2=0;当x≠0时,x2>0” 正解、选D

例3、不等式x>-2的解集在数轴上表示正确的一项是( )

A B C

D

错解,选A

分析、对不等式的解集在数轴上的表示方法不清出错,在数轴上表示不等式的解集时,实心

初二数学备课组

均值不等式的证明方法

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong(数学之家)

本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是An Gn: 一些大家都知道的条件我就不写了

x1 x2 ... xn

n

x1x2...xn

我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:

二维已证,四维时:

a b c d (a b) (c d) 2ab 2cd 4八维时:

(a b c d) (e f g h) 4abcd 4efgh 8abcdefgh

abcd

4abcd

这样的步骤重复n次之后将会得到

x1 x2 ... x2n

2

n

2

n

x1x2...x2n

令x1 x1,...,xn xn;xn 1 xn 2 ... x2

n

x1 x2 ... xn

n

A

由这个不等式有

A

nA (2 n)A

2

nn

1

2

n

x1x2..xnA

2 n

n

(x1x2..xn)2A

n

1

n2

n

即得到

x1 x2 ... xn

n

n

x1x2...xn

这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:

例1:

n

若0 ai 1(i 1,2,...,n)证明

i 1

11 ai

n

1

1 (a1a2...an)n

例2:

均值

高中均值不等式讲解及习题

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

高中均值不等式讲解及习题

一.均值不等式

a2?b21.(1)若a,b?R,则a?b?2ab (2)若a,b?R,则ab?(当且仅当a?b222时取“=”) 2. (1)若a,b?R*,则

a?b时取“=”)

a?b? (当且仅当a?b时取“=”(3)若a,b?R,则ab??) ???2?*2a?b*?ab (2)若a,b?R,则a?b?2ab(当且仅当23.若x?0,则x?11?2 (当且仅当x?1时取“=”);若x?0,则x???2 (当xx且仅当x??1时取“=”)

若x?0,则x?1?2即x?1?2或x?1?-2 (当且仅当a?b时取“=”)

xxx3.若ab?0,则a?b?2 (当且仅当a?b时取“=”)

ba若ab?0,则

ababab) ??2即??2或??-2 (当且仅当a?b时取“=”

bababaa?b2a2?b24.若a,b?R,则((当且仅当a?b时取“=”) )?22注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和

为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.

(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等

不等式1----用均值不等式求最值的类型及方法

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

用均值不等式求最值的类型及方法

均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。要求能熟练地运用均值不等式求解一些函数的最值问题。 一、几个重要的均值不等式

a2?b2①a?b?2ab?ab?当且仅当a = b时,“=”号成立; (a、b?R),222?a?b??②a?b?2ab?ab??当且仅当a = b时,“=”号成立; ?(a、b?R),2??2a3?b3?c3(a、b、c?R?),③a?b?c?3abc?abc?当且仅当a = b = c时,“=”号成立;

3333?a?b?c??④a?b?c?3abc?abc???(a、b、c?R) ,当且仅当a = b = c时,“=”号成

3??33立.

注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;

a?b② 熟悉一个重要的不等式链:?ab??112?ab二、函数f(x)?ax?2a2?b2。 2b(a、b?0)图象及性质 xy?b2aba(1)函数f(x)?ax?bx?a、b?0?图象如图: ?a、b?0?性质:

o?2abxbab(2)函数f(x)?ax?x①值域:(??,?2ab]?[2ab,??);

②单调递增区

不等式1----用均值不等式求最值的类型及方法

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

用均值不等式求最值的类型及方法

均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。要求能熟练地运用均值不等式求解一些函数的最值问题。 一、几个重要的均值不等式

a2?b2①a?b?2ab?ab?当且仅当a = b时,“=”号成立; (a、b?R),222?a?b??②a?b?2ab?ab??当且仅当a = b时,“=”号成立; ?(a、b?R),2??2a3?b3?c3(a、b、c?R?),③a?b?c?3abc?abc?当且仅当a = b = c时,“=”号成立;

3333?a?b?c??④a?b?c?3abc?abc???(a、b、c?R) ,当且仅当a = b = c时,“=”号成

3??33立.

注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;

a?b② 熟悉一个重要的不等式链:?ab??112?ab二、函数f(x)?ax?2a2?b2。 2b(a、b?0)图象及性质 xy?b2aba(1)函数f(x)?ax?bx?a、b?0?图象如图: ?a、b?0?性质:

o?2abxbab(2)函数f(x)?ax?x①值域:(??,?2ab]?[2ab,??);

②单调递增区

柯西不等式及三角不等式

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

2019年04月12日136****5760的高中数学组卷

一.选择题(共2小题)

1.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2B.3C.4D.5

2.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()

A.0B.1C.D.3

二.解答题(共8小题)

3.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;

(2)求a2+b2+c2的最小值.

4.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.

(1)求a的值;

(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.

5.已知正实数a、b、c满足条件a+b+c=3,

(Ⅰ)求证:;

(Ⅱ)若c=ab,求c的最大值.

6.已知函数f(x)=|2x﹣4|+|x+1|,x∈R.

(1)解不等式f(x)≤9;

(2)若方程f(x)=﹣x2+a在区间[0,2]有解,求实数a的取值范围.

7.设函数f(x)=|2x+1|+|x﹣a|(a>0).

(1)当a=2时,求不等式f(x)>8的解集;

(2)若?x∈R,使得f(x)≤成立,求实数a的取值范围.

8.已知函数f(x)=|2x﹣3

柯西不等式及三角不等式

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

2019年04月12日136****5760的高中数学组卷

一.选择题(共2小题)

1.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()A.2B.3C.4D.5

2.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()

A.0B.1C.D.3

二.解答题(共8小题)

3.已知a>0,b>0,c>0,函数f(x)=|x+a|+|x﹣b|+c的最小值为4.(1)求a+b+c的值;

(2)求a2+b2+c2的最小值.

4.已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.

(1)求a的值;

(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.

5.已知正实数a、b、c满足条件a+b+c=3,

(Ⅰ)求证:;

(Ⅱ)若c=ab,求c的最大值.

6.已知函数f(x)=|2x﹣4|+|x+1|,x∈R.

(1)解不等式f(x)≤9;

(2)若方程f(x)=﹣x2+a在区间[0,2]有解,求实数a的取值范围.

7.设函数f(x)=|2x+1|+|x﹣a|(a>0).

(1)当a=2时,求不等式f(x)>8的解集;

(2)若?x∈R,使得f(x)≤成立,求实数a的取值范围.

8.已知函数f(x)=|2x﹣3

均值不等式的应用(习题+答案)

标签:文库时间:2024-06-03
【bwwdw.com - 博文网】

均值不等式的应用

均值不等式应用

一.均值不等式

1.(1)若a,b R,则a2 b2 2ab (2)若a,b R,则ab

2. (1)若a,b R*,则

a b2

*

a b2

22

a b时取“=”)

ab (2)若a,b R,则a b 2

2

ab(当且仅当a b时取“=”)

a b (3)若a,b R,则ab ) (当且仅当a b时取“=”

2

*

3.若x 0,则x

1x

“=”);若x 0,则x 2 (当且仅当x 1时取

1x

“=”) 2 (当且仅当x 1时取

若x 0,则x 1 2即x 1 2或x 1 -2 (当且仅当a b时取“=”)

x

x

x

3.若ab 0,则a b 2 (当且仅当a b时取“=”)

b

a

若ab 0,则

ab

ba

2即

2

ab

ba

2

2或

ab

ba

) -2 (当且仅当a b时取“=”

4.若a,b R,则(

a b2

)

2

a b2

(当且仅当a b时取“=”)

注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应