楚河楚林水利枢纽设计-设计说明书 水利工程专业毕业设计 毕业论

更新时间:2024-04-19 18:59:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

摘 要

林江是我国大河流之一 ,其干流全长700公里,流域面积17400平方公里;楚河是林江的重要支流,流经林江的上下游地带,全长250公里,流域的面积为7200平方公里。楚河开发计划是配合林江而制定的。楚河楚林水利枢纽就建立在楚河和林江汇流处的楚林。

枢纽属一等工程,以防洪和发电为主,兼有航运等综合效益。其主要建筑物有:混凝土实心重力坝、引水建筑物、泄洪建筑物、放空建筑物、过坝建筑物和电站厂房等

枢纽按千年一遇洪水设计,五千年一遇洪水校核。水库正常蓄水位178.0米,设计洪水位179.3米,校核洪水位180.13米。电站装机3台2.4万千瓦,总装机72000千瓦。船闸可以保证80吨级驳船通航。

主体建筑物实体重力坝坝顶高程182.04米,最大坝高46.04米;泄洪采用表孔,共三孔,每孔宽12米,堰顶高程170.92米;放空采用深孔,设一孔,宽3.5米,高4米,底板高程151米;电站引水采用坝内压力钢管,钢管直径4.5米;电站厂房为坝后式。

本设计对枢纽的主体建筑物进行了认真的方案比选和详细的尺寸设计,并对所设计的建筑物进行了安全校核,保证建筑物的安全运行。同时对水电站和施工导流进行了简要的设计。

[关键词]林江 楚河 楚林 水利枢纽 大坝

Abstract

Linjiang River is one of the large stream flow in our country, which has 700 kilometers long, and drainage area covers about 174000 km2. Chuhe River, which is on the upstream of the Linjiang River, is the most important anabranch on the Linjiang River, it has 500 kilometers long and it’s drainage area covers 7200 km2. The development plan of Chuhe River is determined on the Linjiang River. The Chuhe Chulin water project plan is built at the Chulin, of which the accordant junction of Chuhe River and Linjiang River.

The Chuhe Chulin water project plan is the first class project, it’s main functions are flood control and power generation. The main building includes: the concrete gravity dam, the diversion head building, the emptying outlet building and water power plant etc.

Water project plan is designed according to meeting flood design once in millennium, and meet flood check once in five thousand years. The normal water level of the project is 178.0m, the design flood level is 179.3m, and the check flood level is 180.13m.The total volume of the power generation units is 72000KW. The ship box can guarantee that 80 tons of barges get through.

This design has compared several available projects earnestly and design detailed size. At the same time it checks the safety, and ensure the safe operation of the building. Simultaneously, the paper design the water power station and diversion work briefly.

[Keywords] Linjiang River Chuhe River Water project plan Dam

目 录

第一章 总述 ··················································································································· 1 第二章 基本资料 ············································································································· 2 2.1 坝址地形 ················································································································ 2 2.2 坝址地质 ················································································································ 2 2.3 水文气象 ················································································································ 2 2.4 当地材料分布情况 ···································································································· 4 2.5 交通运输情况及施工条件 ··························································································· 4 2.6 水利水能计算资料 ···································································································· 4 2.7 船闸设计资料 ·········································································································· 5 第三章 坝型选择与主要建筑物的选择 ·················································································· 6 3.1 确定枢纽等别和建筑物的级别 ····················································································· 6 3.2 坝型的选择 ············································································································· 6 3.3 枢纽主要建筑物的选择 ······························································································ 8 第四章 调洪演算 ··········································································································· 11 4.1调洪演算的目的、基本原理及方法 ············································································· 11 4.2 调洪演算方案及成果 ······························································································· 11 第五章 枢纽布置 ··········································································································· 13 5.1 枢纽布置的基本原则 ······························································································· 13 5.2 枢纽布置方案比选 ·································································································· 13 5.3 枢纽的进一步布置 ·································································································· 13 第六章 挡水建筑物设计 ·································································································· 15 6.1 挡水建筑物形式的选择 ···························································································· 15 6.2 剖面尺寸设计 ········································································································ 15 6.3 坝体经济剖面选择 ·································································································· 16 6.4 稳定及应力分析(手算) ························································································· 17 6.5 稳定及应力分析(电算) ························································································· 19 第七章 泄水建筑物的设计 ······························································································· 22 7.1 泄水建筑物形式的选择 ···························································································· 22 7.2 溢流坝剖面设计 ····································································································· 22 7.3闸门、闸墩及导墙设计 ···························································································· 25 7.4 稳定与应力分析(电算) ························································································· 28 第八章 放空建筑物设计 ·································································································· 31 8.1 深孔的作用 ··········································································································· 31 8.2 深孔形式的选择 ····································································································· 31 8.3 基本尺寸初拟 ········································································································ 31

8.4 深孔体型设计 ········································································································ 31 8.5 深孔其他设施设计 ·································································································· 34 第九章 电站坝段设计 ····································································································· 36 9.1 电站布置形式的选择 ······························································································· 36 9.2 基本尺寸拟订 ········································································································ 36 9.3 深式进水口体型设计 ······························································································· 37 9.4 坝内钢管的布置 ····································································································· 39 9.5 其他设施设计 ········································································································ 40 第十章 通航建筑物设计 ·································································································· 41 10.1 通航建筑物形式的选择 ·························································································· 41 10.2 船闸的选型·········································································································· 41 10.3 船闸基本尺寸设计 ································································································ 41 10.4 船闸在枢纽中的布置 ····························································································· 42 第十一章 细部构造设计 ·································································································· 43 11.1 坝顶构造 ············································································································· 43 11.2 坝体分缝及止水 ···································································································· 44 11.3 廊道系统 ············································································································· 45 11.4 坝体排水 ············································································································· 47 11.5 坝体材料分区 ······································································································· 47 第十二章 基础处理 ········································································································ 49 12.1 地基开挖与清理 ··································································································· 49 12.2 固结灌浆············································································································· 49 12.3 帷幕灌浆············································································································· 50 12.4 坝基排水············································································································· 51 第十三章 施工导流设计 ·································································································· 53 13.1导流方案选择 ······································································································· 53 13.2导流方案 ············································································································· 54 13.3导流设计流量确定 ································································································· 54 13.4围堰工程 ············································································································· 55 附 录 坝址处流量-水位关系 ··························································································· 57

第一章 总述

第一章 总述

林江是我国大河流之一 ,其干流全长700公里,流域面积17400平方公里,上游95%为是山地,河床狭窄,水流湍急;中游大部分为丘陵地带,河床较宽;下游两岸为冲积平原,人口最密,农产丰富,为重要的农业区域,且有一个中等工业城市,但下游河床淤高,主要靠堤防水,挡水,每当汛期,常受洪水威胁。林江流域内的物产以农业为主,有稻谷、小麦、棉花、玉米、甘薯等,矿产较少,燃料很缺乏。

楚河是林江的重要支流,流经林江的上下游地带,全长250公里,平均坡降为0.0009,流域的面积为7200平方公里,河道两岸为山地丘陵,河道狭窄,水流湍急,能量蕴藏甚大,但洪水涨落迅速,对林江中下游的防洪相当不利。

楚河开发计划是配合林江而制定的,为减轻楚河洪水对林江中下游农田的威胁,且开发楚河能够供应林江中下游工农业日益增长的动力需要,拟在楚河和林江汇流处的楚林兴建水利枢纽,本枢纽的防洪任务为:要求设计洪水时,下泄流量不大于2000立米/秒,校核洪水时不大于2500立米/秒。枢纽的装机容量为72000千瓦,为适应今后国家建设事业的要求,枢纽建成后,应能维持80吨船只的通行。

1

第二章 基本资料

第二章 基本资料

2.1 坝址地形

在本坝址地区,河床狭窄,仅一百多米宽,但随着高程之增高两岸便趋于平坦,两岸高度在200米以上,海拔高程在400米以上,在坝址处右岸较左岸为陡,右岸平均坡度为0.5左右,右岸为0.4左右,在坝址位于河弯的下游,在坝址上游十余公里有开阔地带,为形成水库的良好条件。

2.2 坝址地质

该区地质构造简单,主要岩层为黑色硅质页岩和燧石,上有3~9米左右的覆盖层,系河沙卵石,近风化泥土层及崩石,其岩层性质为:

黑色硅质页岩:属沉积岩,为硅质胶结物之页岩,根据勘测结果,该岩层性坚硬致密,仅岩石上层10~18米深度存在有裂隙和节理,不很严重,但需加以处理。经过压水实验,岩石之间单位吸水量为0.1公升/分钟。

燧石:其岩层不宽,分布于左岸,岩性较黑色硅质岩为弱,岩层走向:左岸为南30°西,倾角为50°~70°,倾向正向上游:

在坝址处,据目前资料未发现断层。 硅质页岩的力学性质: (1)天然含水时的平均容重 (2)极限抗压强度: (3)牢固系数

2500公斤/立方米 1000~1200公斤/立方厘米 f=10~12

坝轴线岩层剖面图见蓝图。

2.3 水文气象

本枢纽位于我国中部,气候温和,雨量丰富,雨量多集中于6~9月,此四个月为丰水期,多暴雨,流域及河流坡度较陡,故洪水来势凶猛,枯水期在10~5月,1~4月为最枯季节,本河流自1954年开始建立水文站,本枢纽距该站不远。 2.3.1、多年月平均流量

表2-1 多年月平均流量 月份 1 流量 60

2 50 3 80 4 100 5 180 6 420 7 650 8 600 9 440 10 240 11 150 12 95 2

第二章 基本资料

2.3.2、推算得的各种类型时洪峰值

表2-2 各种类型的洪峰值 频率 洪水期洪峰(m/s) 枯水期洪峰(m/s) 330.01 5090 0.02 5600 0.1 4750 1.0 3630 2.0 3300 270 5 2800 250 10 2500 208 2.3.3 降雨量资料

表2-3 各月降雨资料 月份 各月平均降雨量 各月平均降雨日数 月份 各月平均降雨量 各月平均降雨日数 1 5.2 2.4 7 118.0 6.3 2 8.8 3.7 8 140.0 3.3 3 18.5 3.9 9 123.2 10.1 4 34.0 6.3 10 60.1 8.8 5 32.6 8.1 11 28.2 7.8 6 80.3 8.1 12 8.0 2.2 2.3.4气温记录及冰冻情况,单位℃

表2-4 气温记录及冰冻情况 月份 多年月平均气温 最高气温 最低气温 月份 多年月平均气温 最高气温 最低气温 1 4.2 13.5 -7.0 7 28.6 38.5 17.5 2 6.5 20.0 -4.7 8 27.7 37.2 16.0 3 11.5 28.5 -2.3 9 22.7 .6.0 10.0 4 17.0 30.4 1.5 10 16.8 28.0 2.5 5 22.1 35.2 8.0 11 10.4 21.1 -2.1 6 25.9 39 13.0 12 4.7 15.3 -4.8 年平均气温为16.5℃

河道常年不结冰,在很冷的情况下,地面有冰冻情况现象,但历时短。 2.3.5河道泥沙情况

根据坝址附近水文站的统计,本河流年平均输沙量1.8×106米3,在河流的上游山区

3

第二章 基本资料

有部分山区有部分森林,其他地方亦在进行造林工作和其他水土保持工作。水土保持生效年限可采用30年,泥沙饱和容重取1.4吨/立方米,泥沙内摩擦角为0°。 2.3.6 水库吹程、风速

吹程为3.0公里,多年平均最大风速为1.5米/秒

2.3.7 典型洪峰过程线;水库水位——库容曲线;水库水位——面积曲线。(见蓝图) 2.3.8 坝址流量——水位关系如下表

表2-5 流量-水位关系 流量(m/s) 水位(m) 流量(m/s) 水位(m) 33200 141.45 3000 148.68 500 143.13 4000 150.41 1000 144.8 5000 152.1 2000 146.94 5500 152.96 2.4 当地材料分布情况

在坝址上下游两岸有大量的河沙和较多的卵石,据初步调查河沙的储量为820000立方米,渗透系数K=4×10-2厘米/秒,卵石储量有580000立方米,大部分在上游。

在坝址下游三公里左右没有部分土壤;储量不多,约在52000立方米,k=1×10-3厘米/秒。

在本河流上游地区,有部分山区森林,可做建坝所需木材之用。

2.5 交通运输情况及施工条件

1 交通运输

(1)水路:目前50吨木船可直通坝址

(2)陆路:目前已有公路通过本山区,距离坝址150公里处有铁路,且与公路衔接。外地材料之运输,主要靠铁路、公路,部分可用木船,运输较方便。

2 施工动力与施工机械应用:施工动力大部分可由坝址下游处的县城供给,不足之数由离坝址70公里的县城供给,施工机械之供应是方便的。

3 劳动力:坝址所在专区,有足够的农业劳动力;在满足的农业生产的要求下,可以抽调一部分参加枢纽之修建工作。

2.6 水利水能计算资料

正常高水位

178.00米

4

第二章 基本资料

汛前水位 175.80米 死水位

166.28米 水库最高洪水不得超过 181.28米 设计洪水安全泄量 2000米3/秒 校核洪水安全泄量 2500米3/秒 电站总装机容量

72000千瓦

电站最大引用流量

240立方米/秒

岩石与混凝土之间摩擦系数 0.65 抗剪强度系数

f′=0.8;c′=0.5MPa

2.7 船闸设计资料

(1)过闸队列形式 (2)船只尺寸

拖船——船长 Lt=15米

船宽 Bt=3.5米

吃水深度 Tt=0.6米 驳船——船长 LB=30米 船宽 BB=4.0米 拖船

船高 H拖船B=4.0米

吃水深度 TB=0.8米 每只船载重为 80吨

5

第三章 坝型选择与主要建筑物的选择

第三章 坝型选择与主要建筑物的选择

3.1 确定枢纽等别和建筑物的级别

3.1.1 枢纽的组成

为了满足枢纽的正常运行,充分发挥各方面的社会、经济效益,拟建筑物有:拦河坝、溢流坝、水电站的取水系统及厂房、过船建筑物。 3.1.2 确定建筑物的等级

根据原水电部1978年颁布的《水利水电枢纽工程等级划分及设计标准山区、丘陵区部分SDJ12-78(试行)》,结合楚河水利枢纽的水库库容、装机容量、防洪效益等因素:

正常高水位为178.00m,查“容积-水位关系曲线”图(见蓝图)得相应库容为13.5亿立方米,达到大(1)型工程规模,等别为一等;

电站总装机为72000千瓦,达到中型工程规模,等别为三等; 防护对象是一中等工业城市,达到中等工程规模,等别为三等;

从而确定工程等别为一等,主要建筑物为1级,次要建筑物为3级,临时建筑物为4级。查规范可得:

正常(设计)洪水重现期 1000~500年 对应频率:0.1%~0.2% 非常(校核)洪水重现期 5000~2000年 对应频率:0.02%~0.05%

3.2 坝型的选择

3.2.1 坝轴线的选择

坝轴线的选择应考虑地质条件、地形条件、建筑材料、施工条件、经济效益等因素。拟采用下坝线,该处地址构造条件简单,在岩石上层10~18米深度存在有裂痕和节理,不严重,可以处理。组成主要为黑色硅质岩和燧岩,地质坚硬;地形条件,该处地势平坦,便于不止施工机械和场地。 3.2.2 坝型的初步选择

虽然河床较窄,但随高程的增高两岸便趋于平坦,整个河谷较宽,首选时排除拱坝。参加比选的坝型有混凝土重力坝、土石坝、面板堆石坝。

(1)混凝土重力坝

优点:安全可靠,设计及施工简单,对地形和地质条件的适应性较好,对地基要求不太高,适于各种气候条件下的修建,受冻害影响较小;经验丰富,维护修理费用低;施工

6

第三章 坝型选择与主要建筑物的选择

导流和永久性泄洪问题容易解决。

缺点:体积大,消耗水泥、石料较多;材料强度不能充分发挥;坝底扬压力较大;混凝土水化热较大,温控措施较高。

(2)土石坝

优点:就地取材,节约材料;能很好的适应较差的地质条件,抗震性较好,结构简单,工作可靠,使用寿命长。

缺点:坝坡较小,工程量较大;坝顶不能过水,需要另加泄水建筑物;施工导流不方便;对坝的防渗要求较高;沉降问题存在。

(3)面板堆石坝

优点:对自然条件有广泛的适应性,对地基要求比混凝土坝低,可适应不均匀沉降,抗震性能好,施工不受气候限制;就地取材,可节约水泥、木材和钢材等重要建筑材料;机械化施工,可加速建坝,减小投资;可策划能够手承受水头不太大的坝顶溢流;结构简单。

缺点:堆石坝属于散粒坝体,需修建溢洪道或隧洞进行泄洪,而这些泄洪设施会加大枢纽的投资和工程量;施工中的导流问题难以解决。

结合该处的地址条件简单而良好,河谷较为宽广,在经济和技术成熟的前提下,优选混凝土重力坝。

3.2.2 重力坝坝型的进一步选择

混凝土重力坝有四种坝型进行比选,分别为:实体重力坝、宽缝重力坝、空腹重力坝、预应力重力坝,他们之间的比较列于表3-1

表3-1 重力坝各种坝型比较 实体重力坝 宽缝重力坝 扬压力降低,节省混凝土; 散热条件好; 宽缝方便检查和观测。 施工中模板数量增加,使施工复杂,难度加大; 气温变化剧烈,易产生表面裂缝。 空腹重力坝 扬压力较小,节省混凝土; 散热条件好; 坝体应力条件改善; 空腹内进行检测和维修方便 结构复杂,施工和设计难度都较大; 需要的钢筋和模板较多。 预应力重力坝 施加预应力,增加坝体的稳定; 改善坝身应力; 减少坝体的方量。 优断面形状简单; 点 机械化施工,混凝土浇注容易; 工程经验丰富。 缺底部扬压力大; 点 施工散热条件差。 施工复杂; 钢筋用量多; 实践工程较少,经验缺乏。 7

第三章 坝型选择与主要建筑物的选择

从中可看出实体重力坝构造简单,施工和设计的难度较小,且有大量的工程事例可供参考,经验丰富。而其他的坝型都有共同的缺点:施工复杂,设计难度大。优先考虑使用实体重力坝。

综上所述,最后确定坝型为实体重力坝。

3.3 枢纽主要建筑物的选择

3.3.1挡水建筑物

由3.2分析知,采用实体重力坝。 3.3.2泄水建筑物

参与比选的泄水方案有三:河岸溢洪道、泄洪隧洞和溢流坝。分别将其特点和适用条件列于表3-2。

表3-2 泄水方式比较 方式 河岸溢洪道 泄洪隧洞 特点 其结构特点是地面开敞式。他具有超大的泄流能力;溢洪道检修方便,运行安全可靠;可充分利用地形,减少开挖量。 在山体中开挖的一种水流信道。他作为水利枢纽的或渠首的重要组成部分,在水利枢纽中广泛应用,而且工程规模越来越大。泄水隧洞按进口高低可分表孔和深孔。 表孔的进口属于堰流,超泄流能力大,结构简单运行方便可靠。而深孔结构复杂,对闸门的要求高,在设计、施工和运行管理方面都有一些特殊的问题,必须妥善解决。 泄水隧洞总的来说开挖量较大,施工工序多、速度慢、难度大、工作量大、场地狭小、运输困难、易发生事故,切工程投资较大。 通过坝身宣泄洪水的泄流建筑物。溢流坝结构上简单,检修方便;水流平顺;便于排除漂浮物,不易堵塞;超泄流潜力大;施工简单方便。 但在开始泄流是流量较小,不能适时加大泄流量来降低水位。另外他不能满足排沙防空等要求;所以必须根据需要设置防空、排沙等设施。 适用条件 最好能布置在垭口等有利地形处,常和土石坝联合修建。对于本枢纽明显不适合。 表孔常用于要求泄水量随水位增长而较快增长时,或需要排除表面污物时;深孔适用于要求调节水库水位或水库有放空要求时。 他们一般常用在拱坝中,本枢纽不优先采用。 溢流坝 在重力坝枢纽中一般多用此种泄流方式。在枢纽中设置溢流坝段,可以很好的宣泄很大洪水流量;且较其他泄水方式较经济。 由于本枢纽使用的是重力坝,从经济和施工方面考虑,拟采用溢流坝的泄水方式来宣泄洪水。

3.3.3 电站建筑物

电站是枢纽的重要组成部分,是工程建成后的重要的经济来源。按电站的建筑物极其

8

第三章 坝型选择与主要建筑物的选择

特征,水电站的布置形式有坝式、河床式和引水式三种典型布置形式,对他们进行比选:

坝式厂房:坝式水电站是靠坝来集中水头,最常见的布置方式是水电站厂房位于非溢流坝坝趾处,即坝后式水电站,这种水电常建于河流上并排布置有困难时,集中的落差为中、高水头。当河谷较窄而水电站机组较多、溢流坝和厂房并排布置有困难时,可将厂房 布置在溢流坝下游或让溢流水舌挑跃厂房顶泄入下游河道,成为挑跃式水电站;或者让厂房兼做溢洪道宣泄洪水,成为厂房顶溢流式电站。当坝体足够大时,还可将厂房移至坝体内空腔内,成为坝内式厂房

河床式电站:河床式电站厂房是挡水建筑物一部分,从而成为集中水头的挡水建筑物之一,该形式多建在平原区、河流的中下游的低坝枢纽上。

引水式电站:引水道较长,并用之集中水电站的全部或大部分的水头。这种水电站多见于流量小,坡度大的河流中、上游或跨流域开发方案。

由于该枢纽位于丘陵地区,引流量较大,河床较窄,坝体经过经济剖面选择后坝体比较单薄,下游水位也较低,坝后式水电站优先被采用。

综上,电站采用坝后式水电站。 3.3.4 放空建筑物

在重力坝枢纽中多用深孔来放空水库。在枢纽中除了放空还担任了泄洪、灌溉放水、

施工导流库及排砂等责任。根据泄水孔中的水流的状态,可分为无压孔和有压孔。下面就对这两种方式进行比选。

表3-3 有压孔和无压孔的比较

形式 项目 工程布置 水流条件 结构条件 布置灵活,水平弯角不大即可,较优 要求两侧顺直,以免涡流。易高速 喷射,断面要求也高,流态不好。 有压孔 无压孔 流速小,流态稳定,其他问题不大,断面要 流速较高,流态复杂,水流掺气、 求也比无压洞小,较优。 空蚀、震动问题较多。 需要断面全衬砌,要有一定埋深,当有外水 无需衬砌与埋深,山岩压力小时, 压或者围堰抗力较大时经济 较为有利。 闸门设置运行 闸门分设两处,优缺点与无压相反,隧洞末 工作和检修闸门都在进口,管理操 端压力大,结构复杂 作方便,但维修处理困难, 工程量与施工 一般来讲有压洞的开挖、混凝土和钢筋量 为少。 在开挖立模浇筑等工序无压洞较优 。 由于枢纽为重力坝,相对于其他坝型坝身厚大,采用无压管可以提高泄流能力,而通

过设计可以解决气蚀等问题,做到扬长避短。而从目前国内外已建成和正在建设的工程来

9

第三章 坝型选择与主要建筑物的选择

看,无压深孔选用较多,经验丰富。决定采用无压深孔。

综上,使用无压深孔来作为放空建筑物。

3.3.5航运建筑物

考虑有船队的通过和为了适应今后国家建设事业的要求,拟订采用船闸。

10

第四章 调洪演算

第四章 调洪演算

4.1调洪演算的目的、基本原理及方法

调洪演算的目的:确定溢洪道尺寸,满足最大下泄流量及下游防洪要求;计算最高洪水位,确定大坝的高度,以及工程量和上游的水位和淹没状况;其任务是在水工建筑物或下游防护对象的防洪标准一定的情况下,根据已知的设计入库洪水过程线,最大下泄流量,防洪库容和水库相应的最高洪水位。

调洪演算的基本原理是:水库调洪是在水量平衡和动力平衡的支配下进行的。水量平衡是用水库水量平衡方程表示,动力平衡可由水库蓄泄方程表示,调洪演算就是从起调开始,逐时段求解这两个方程。

(1) 水库水量平衡方程:在一定时段?t内,入库水量减出库水量,应等于该时段内水增

加或减少的蓄水量,由此可写出如下的水量平衡方程:

Q1?Q2q?q2??t?1??t?V2?V1 2s式中 Q1,Q2——时段?t始末的入库流量,

q1,q2——时段?t始末的出库流量, V1,V2——时段?t始末的水库蓄水量,

?t——计算时段。

(2) 水库蓄泄方程

水库下泄流量在溢洪道尺寸一定的情况下仅与堰顶水头有关即q=f(H)同时泄流水头H是库中蓄水量V的函数即H=f(V),所以下泄流量是蓄水量的函数q=f(V),由此二方程可建立来流量,出流量和库容的关系及其曲线,从而可推求最高洪水位Hmax和最大出流量Qmax。 调洪演算的方法:定几组溢洪道尺寸,建立出流量和水位的关系,水位和来流量的关系,水位和库容的关系,以及他们和时段的关系,从而找到预期目标。常用方法有列表试算法和半图解法。

此处采用列表试算法(电算)。

4.2 调洪演算方案及成果

4.2.1 基本资料

水位-流量曲线(见附图1);水位-面积曲线(见蓝图);水位-容积曲线(见蓝图);

11

本文来源:https://www.bwwdw.com/article/8x2p.html

Top