金属材料热处理课程设计说明书(凹模)

更新时间:2024-05-08 03:50:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《热处理工艺设计》

课程设计报告

报 告 题 目: 9Mn2V凹模热处理工艺设计 作者所在系部: 模具技术系 作者所在班级: 专接本132 作 者 学 号: 20911323 作 者 姓 名 : 沈 亚 锋 指导教师姓名: 刘 明 全 完 成 时 间 : 2013-9-25

第1 页共24页

1 材料选择

通过给出的技术要求(61~63HRC),所以要选择淬透性和淬硬性都比较好的材料作为该凹模的制作材料,经查阅相关资料有很多材料都适合作为冷作模具的材料,如9SiCr、Cr12MoV、9Mn2V、CrWMn等。下面对这四种不同的材料的比较如下:

(1)化学成分(质量百分数:%):

化学成分 9SiCr C Si 1.20~1.60 ≤0.40 ≤0.40 ≤0.40 Mn 0.30~0.60 ≤0.40 1.70~2.00 0.80~1.10 Cr 0.95~1.25 11.00~12.50 0.90~1.20 W 1.20~1.60 V 0.15~0.30 0.10~0.25 P ≤0.030 ≤0.030 ≤0.030 ≤0.030 S ≤0.030 ≤0.030 ≤0.030 ≤0.030 0.85~0.95 1.45~Cr12MoV 1.70 0.85~9Mn2V 0.95 0.90~CrWMn 1.05 (2)物理常数(近似值:℃):

临界点 9SiCr Cr12MoV 9Mn2V CrWMn Ac1 770 830 730 750 Acm 870 855 760 940 Ar1 730 750 655 710 Ar3 785 690 Ms 160 230 125 260 Mf -30 0 -50 (3)淬透性:

材料 9SiCr Cr12MoV 9Mn2V CrWMn 淬透性能 淬透性较高,能达到60HRC的端淬距离为13mm 淬透性高 淬透性很高,能达到60HRC的端淬距离为13mm 淬透性较高,20mm的能全部淬透并达到60HRC 回火硬度 58~65 55~61 60~62 55~65 综合以上所列出的各项数据显示,这些材料均能达到该零件的使用性能要求。但是根据实际成本和材料的化学成分来看,9Mn2V在符合要求的同时具有整体优势。因为从热处理特点来看,9Mn2V的化学成分相对简单,且合金元素含量也不高,便于热处理;另外,从上述四种材料的物理参数看来,9Mn2V的临界点相对较低,应用到大批量生产上可以减少一部分能源的使用,这是一方面的优势。此外,

第2 页 共24页

对9Mn2V进行回火的时候还可以不用通过介质来进行加热。所以,在均能满足性能要求的前提下,9Mn2V非常符合制作这个凹模。

9Mn2V的化学成分(质量百分数:%)如下表:

C 0.85~0.95 Si ≤0.40 Mn 1.70~2.00 V 0.15~0.25 P ≤0.030 S ≤0.030 9Mn2V的相关物理参数(摄氏度:℃)如下表:

Ac1 730 Acm 760 Ar1 655 Ar3 690 Ms 125 2 确定加工工艺路线

序号 1 2 3 4 5 6 7 8 9 10 11 12 13 工艺 下料 锻造 退火 粗铣 磨平面 钳工划线 棒料下料 将坯料锻成长方体 将锻件退火,以消除锻压造成的内应力,改善加工性能 铣各平面,厚度留磨削余量0.6mm,侧面留磨削余量0.4mm 磨上、下平面(单面留磨量0.3mm)和相邻两侧面,保持各面相互垂直(用90°角尺检验) 划出对称中心,各个孔的位置,型孔的轮廓线 内容 设备 锯床 铣床 磨床 仿铣床 钻床 磨床 线切割机 型孔粗加工 在仿铣床上加工型孔,留单边加工余量0.15mm 加工余孔及攻螺纹 热处理 磨平面 线切割 钳工精修 检验 1)加工凹模上的余孔; 2)对指定的孔攻螺纹 保证61—63HRC 磨上、下平面及相邻两侧面至要求尺寸 按图切割型孔达到尺寸要求 全面达到设计要求 3 热处理工艺方法选择

3.1 模具的预备热处理

为了消除毛坯的残留组织缺陷,有利于后续冷热处理,提高使用性能和寿命。冷作模具的预备热处理采用球化退火,因为球化退火可以获得满意的机械加工性能,并做好淬火前组织上的准备,球化退火组织对最终获得热处理后的强韧性、畸

第3 页 共24页

变、开裂倾向、耐磨性以及断裂韧度有显著的影响。

球化温度应选在Ar1以上20~50℃为宜,要避免在退火过程出现有残存的原片状碳化物或新的片状及棱角状碳化物,应保留许多未溶的细小碳化物颗粒以作为球化的结晶核心,保证能加速球化过程和形成均匀的球化体。球化退火的等温温度和保持时间要选择在不出现片状或片、球状混合组织,并有合适的球化速度范围为宜,保证能加速球化过程和形成均匀的球化体。 3.2 模具的最终热处理

冷作模具的最终热处理是淬火+低温回火。在冷作模具的热处理工艺过程中最重要的就是淬火和回火的处理,淬火是为了使冷作模具具有高的强度、硬度和耐磨等性能;回火主要是消除工件淬火时所产生的残余内应力,提高材料的塑性和韧性,获得良好的综合力学性能,稳定工件尺寸,使钢的组织在工件使用过程中不再发生变化。淬火与低温回火相结合,则可以使模具具有高的强度、耐磨性、足够的强度和韧性以及一定的冲击性的配合,这使得冷作模具应具备高的变形抗力、断裂抗力、耐磨损、抗疲劳和不咬合等能力。

淬火一般是把钢加热到临界点Ac1或Ac3以上,保温并随之以大于临界冷却速度冷却,以得到介稳状态的马氏体或下贝氏体组织,而低温回火一般是指在低于250℃的情况下进行回火,同时还要根据钢种注意要避免各种钢的回火的脆性温度区间。低温回火可以使工具、量具获得高硬度、耐磨、足够的强度和韧性。

4 制订热处理工艺制度

4.1 预备热处理工艺制度的制订

加热速度 90~100℃/h 加热温度 750~760℃ 保温时间 4h 等温温度 680~690℃ 等温时间 4h 冷却速度 ≤30℃/h 第4 页 共24页

温度(T/℃) 750~760℃ 保温4h 冷却≤30℃/h 680~690℃ 冷却≤30℃/h ≤550℃ 空冷 等温4h O 9Mn2V球化退火工艺曲线 时间(t/h) 4.1.1 加热速度

加热速度主要与钢的成分、工件的尺寸和形状等因素有关。为防止变形开裂,应该适当控制加热速度。碳钢和低合金钢的中、小件的加热速度一般控制在100~200℃/h;中、高合金钢形状复杂的或截面大的工件一般应进行预热或采用低温入炉进行随炉升温的加热方式,在温度低于600~700℃是的加热速度为30~70℃/h,高于此温度后控制在80~100℃/h。根据本设计中零件尺寸及形状的实际情况,采用低温入炉加热,加热速度为90~100℃/h能够达到目的。 4.1.2 加热温度

球化退火主要应用于共析、过共析钢,使钢中的碳化物球化以降低硬度,改善组织,提高淬火钢的性能及减少淬火缺陷等。加热温度对钢中碳化物的球化效果有着很大的影响。球化退火加热温度不宜太高,一般控制在稍高于Ac1,如Ac1+(20~30)℃,可获得不均匀奥氏体和大量细小的残留碳化物,作为碳化物球化的非自发核心,以促进球化。所以根据9Mn2V的Ac1点的温度(730℃)得到球化温度为750~760℃。 4.1.3 加热时间

加热时间主要与钢的成分、工件的尺寸与形状、加热温度、加热介质、加热方式、装炉量及热处理目的有关,采用公式

(min)来计算,其中K表示与加

热条件有关的综合物理因素,而W=V/F(mm)表示与工件的尺寸和形状有关的几何因素(V为工件的体积,F为工件的面积)。根据本设计中零件的尺寸确定加热

第5 页 共24页

时间为:(0.6~2)×(35+5+5)=(27~90)min。所以取加热时间为60min。

KW使用时间系数见下表:

炉型 系数 工件形状 柱状 0.7 (0.167~0.25)D (0.117~0.175)D 3.5 (0.167~0.25)D (0.6~0.9)D 板状 0.7 (0.167~0.5)B (0.117~0.35)B 4 (0.167~0.5)B (0.6~2)B 薄管 0.7 (0.25~0.5)δ(0.175~0.35)δ 4 (0.25~0.5)δ(1~2)δ 厚管 1.0 (0.25~0.5)δ(0.25~0.5)δ 4 (0.25~0.5)δ (1.25~2.5)δ K 盐炉 W KW 空气炉 K W KW 注:D为有效厚度;B为板厚;δ为管壁厚。 4.1.4 保温时间

工件在炉内要进行一段时间的保温,一方面是为了使工件能够很好地透热,另一方面使工件内部各部分的温度分布均匀一致,组织状态均匀一致。保温时间的确定也与钢的成分、工件的尺寸与形状等有关。由于合金钢中碳化物内存在大量的合金元素,提高了碳化物的稳定性,使得合金碳化物即使在高温下也很难溶解,所以要进行长时间的保温,通过查阅合金钢手册相应钢种的等温退火曲线取保温时间为4h。

4.1.5 等温温度

由热处理手册查得,对于过共析钢和合金工具钢的球化退火温度的确定应该是Ar1+(20~30)℃,所以根据9Mn2V的Ar1点温度(655℃)来确定其等温温度为680~690℃。 4.1.6 等温时间

等温时间取决于该材料的化学成分及工件截面尺寸,为了使工件能够很好地完成等温转变,使合金碳化物能够很好地转变成球状碳化物,且均匀细小。根据合金钢手册相关钢种的等温曲线的等温时间,所以取等温时间为4h。 4.1.7 冷却速度

冷却速度对钢退火后的组织与性能影响的一般规律是:冷却速度越大,奥氏体分解温度越低,则珠光体转变产物越细,应力越大,硬度越高。所以,为达到预期的处理效果,冷却速度应控制适当。由于要求等温球化退火的冷却速度缓慢,所以

第6 页 共24页

根据相关资料取冷速度为小于等于30℃/h。

退火件一般采用随炉冷却至低于550℃出炉空冷,对于要求内应力较小的工件应炉冷至低于350℃出炉空冷。

各类钢材的退火冷却速度见下表:

钢材类别 冷却速度(℃/h) 碳钢 100~150 合金钢 50~80 钢合金钢 20~70 注:球化退火的冷却速度为20~60℃/h。

4.2 最终热处理工艺制度的制订 4.2.1 淬火工艺制度的制订

加热速度 90~100℃/h 温度(T/℃) 加热温度 760~780℃ 保温时间 0.5h 冷却速度 油淬 760~780℃ 保温0.5h 油淬 空冷 O 时间(t/h) 9Mn2V淬火工艺曲线

(1)加热速度

加热速度与退火时的加热速度相同,加热速度选择为90~100℃/h。一般在空气炉中的加热比在盐浴炉中加热要高10~30℃,采用油、硝盐淬火介质时,淬火加热温度比用水淬火时要提高20℃左右。

(2)加热温度

钢的淬火加热温度与钢的含碳量有关,亚共析钢的加热温度为Ac3+(30~50)℃;共析钢和过共析钢的淬火加热温度为Ac1+(30~50)℃。因为9Mn2V的Ac1点温度是730℃,所以加热温度为760~780℃。

(3)加热时间与保温时间

炉中的工件应在规定的加热温度范围内保持适当的时间,以保证必要的组织转

第7 页 共24页

变和扩散。加热时间和保温时间一共由三部分组成:①升温时间;②透热时间;③组织转变时间。加热时间同退火工艺中的加热时间的确定一致,由于在最终热处理前,工件的尺寸发生了改变,所以其加热时间会有一定的变化,利用退火工艺中所引用的经验公式

(min)来计算。根据本设计中零件的尺寸确定加热时间为:

(0.6~2)×(35+0.5+0.5)=(20~70)min,还是取1h。

其中保温时间可以由经验公式

来加以确定。其中为保温时间系数,

可从工具书查得;k为工件在炉中装炉形式所相应的修正系数;D为工件的有效厚度。根据本设计中零件的相关尺寸计算,其中k取1,所以保温时间为:1.2×1×(35+0.5+0.5)=43.2min,即取40min。又由于手册推荐普通碳钢及低合金钢在透热后保温5~15min即可满足组织转变要求,合金结构钢则需要15~25min。本设计中的零件相对比较小,所以透热时间基本上可以忽略。因此本设计中淬火的保温时间确定为30min。

保温时间系数见下表单位为(min/mm):

直径 <600℃ 750~800℃ 800~900℃ 工件材料 mm 气体介质炉中盐浴炉中加热或预气体介质炉中预热 预热 热 碳素钢 ≤50 >50 ≤50 >50 1.0~1.2 1.2~1.5 1.2~1.5 1.5~1.8 0.6~0.85 0.3~0.4 0.4~0.5 0.45~0.5 0.5~0.65 0.3~0.35 0.3~0.35 1100~1300℃ 盐浴炉中间加热 0.17~0.2 0.16~0.18 低合金钢 高合金钢 0.35~0.1 高速钢 (4)淬火冷却

9Mn2V属于冷作模具钢,所以采用工模具钢较为常见的淬火冷却方式——油冷淬火,以油为冷却介质的淬火冷却,当冷至油温的时候将工件取出空冷。 6.2.2 回火工艺制度的制订

加热速度 90~100℃/h 加热温度 150~180℃ 保温时间 3h 冷却速度 空冷 第8 页 共24页

温度(T/℃) 150~180℃ 空冷 保温3h O 9Mn2V回火工艺曲线 时间(t/h)

(1)加热速度

加热速度与退火、淬火工艺中的加热速度一致,取90~100℃/h。 (2)加热温度

对于工具、模具钢的回火要求是能够保持高硬度的条件下,使脆性有所降低,残余内应力有所减小,所以采用低温淬火。根据手册查得低温回火温度范围在150~250℃进行,但是9Mn2V的回火脆性温度区间在190~250℃,所以加热温度为150~180℃。

回火温度的选择见下表:

工件名称 工具、轴承、渗碳件及碳氮共渗件表面淬火件 弹簧、模具等 回火温度 回火组织 回火目的 在保持高硬度的条件下使脆性有所降低,残余应力有所减小 工艺名称 低温回火 150~250℃ 回火马氏体 在具有高屈服强度及优良的弹350~500℃ 回火托氏体 性的前提下使钢具有一定塑性和韧性 500~650℃ 回火索氏体 使钢既有较高的强度又有良好的塑性和韧性 中温回火 主轴、半轴、曲连杆等重要零件 切削加工量大而变形要求严格的工件及淬火返修件 精密工模具、机床丝杠、精密轴承 高温回火 500~760℃ 消除内应力 去应力回火 稳定化处理 120~160℃长期保温 稳定化的回火索氏体及稳定钢的组织及工件尺寸 残留奥氏体 第9 页 共24页

(3)保温时间

回火时间是从工件入炉后炉温升至回火温度是开始计算,回火温度一般为1~3h。也可以根据经验公式

加以确定。其中

为回火时间系数;

为回火时间系数;D为工件的有效厚度。本设计中的零件的有效厚度为36mm,假设选择回火炉为箱式电阻炉,查表得所以取3h。Kn及An值推荐表如下:

回火条件 Kn/min An/(min/mm) 300℃以上 箱式电炉 120 1 盐浴炉 120 0.4 300~450℃ 箱式电炉 20 1 盐浴炉 15 0.4 450℃以上 箱式电炉 10 1 盐浴炉 3 0.4 为120,为1,所以计算结果为156min,

(4)冷却速度

工件回火后即可出炉空冷至室温。

5 热处理设备选择

5.1 预备热处理设备的选择 5.1.1 退火设备的选择

在本设计中的零件形状为矩形,形状规则且比较小,其预备热处理的目的为球化退火,使其获得满意的机械加工工艺性能,为最终热处理做好组织上的准备。由于该材料的退火工艺中无需通过气体保护进行加热,所以可以采用空气气氛直接装炉加热;此外,进行预备热处理的工件有足够的加工余量,所以对工件脱碳层的要求相对就要小;并且本设计是针对单件小批量生产设计,所以退火炉选择普通间隙式箱式电阻炉即可满足设计要求。中温箱式电阻炉的技术参数和结构如下图所示。

这类炉子由炉体和电气控制柜组成。炉体由炉架和炉壳、炉衬、炉门、电热元件及炉门升降机构等组成。电热元件多分布于两侧墙和炉底。炉内温度均匀度状态主要受电热元件布置,炉门的密封和保温等状态的影响。通常炉膛前端温度较低。工件在高中、温箱式电阻炉中加热主要靠电热元件和炉壁的热辐射。根据形状、尺

第10 页 共24页

寸以及生产批量选择型号为RX3—15—9的中温箱式电阻炉作为该凹模的退火热处理设备。

5.2 最终热处理设备的选择

由热处理手册查得,对于热处理工件性能要求严格的工具钢、模具钢应该选用真空炉、盐浴炉或者流态化炉,这三种炉是对模具和刃具进行热处理的常用的热处理设备。

(1)盐浴炉

第11 页 共24页

盐浴炉是一种综合换热系数大,加热速度快,加热均匀,变形小,热容量较大,加热温度波动小,容易恒温加热的热处理设备;盐液容易保持中性状态,实现无氧化无脱碳加热,在盐液中加入含碳、含氮等物质,容易实现化学热处理;浴炉容易实现工件局部加热错做。但是,浴液对环境有不同的污染程度;工件带出的废盐,不但造成浪费,而且对工件有腐蚀,特别是粘在工件缝隙和盲孔中的盐;中、高温浴炉的浴面辐射热损失较严重,不便于机械化和连续化生产。

(2)流态化炉

流态炉具有快速均匀接触传热传质,能耗低,运行成本低,炉床温度均匀,使用温度范围宽,微(无)氧化脱碳,表面光洁,不需清洗,难以锈蚀(具有防锈性),热处理后零件性能均匀并有很好的重现性;而且可以根据工艺任意设定气氛,炉床内气氛换气净化只需2~3分钟,对易变形,易开裂及杆(轴)、片和异型疑难零件有着良好的工艺效果;操作灵活简便、维修少且方便,无毒害且安全。流态炉还是柔性生产方式和批量生产作业相结合的经济炉型,是多类型工艺的热处理车间;它减少各类单一功能设备投资,减少能源负荷配置的良好途径,可以随零件种类质量和性能要求,灵活调整组织生产,可改变目前存在装备(炉)单一的现状。

(3)真空炉

真空炉热处理设备具有高效、优质、低耗和无污染等一系列有点,是近代热处理设备发展的热点。真空热处理设备种类较多,通常按用途和特性分类,例如:真空退火炉、真空淬火炉、真空回火炉、低真空炉、高真空炉等等。

综合上述三种炉型的特点,再根据本设计中零件尺寸、产品批量规模和对环境保护的要求。通过以上各热处理设备的比较,选择真空热处理炉比较好。 5.2.1 淬火设备的选择

由于该零件是低合金工具钢9Mn2V制作的凹模,所以要求其整体具有高达61~63HRC的硬度,同时还要求工件淬火后表面的化学成分波动小,没有裂纹产生和很小的畸变度。为了满足上述要求,就需要对工件在淬火加热气氛和淬火冷却时要采取相应的措施,在工件加热时应该通过例如真空的手段防止工件表面化学成分的变化,在淬火时应采用油作为淬火介质来控制工件的冷却速度。所以采用油淬真空炉作为该凹模的淬火热处理设备,由于形状和批量小,所以采用双室油淬真空

第12 页 共24页

炉就能达到目的。为了能够防止加热室被污染以及保持较好、较稳定的真空度,选择淬火室与加热室之间有隔热屏的双室油淬真空炉。其中淬火介质按照下表中所列出的相关参数选择合适的淬火介质。根据工件的尺寸、形状及生产批量选择FH·H—20型油淬真空炉即可满足要求。所选择炉型的相关参数及结构示意图如下所示。

第13 页 共24页

5.2.2 回火设备的选择

在回火过程中对热处理工件要求基本一致,只是为了使工件达到使用状态下的性能要求,从加热温度对工件化学成分、形状影响的方面和从热处理设备成本方面来考虑,由于加热温度不高,所以对工件的氧化情况就不是很严重,且工件变形也比较均匀,对精加工影响不大,所以还是选用中温箱式电阻炉作为该凹模的回火设备,其结构和技术规格和预备热处理中的一样。

6 工装设计

6.1 清洗设备

为了防止零件出现软点、组织不均匀等影响热处理质量的现象,所以要在零件热处理前经行清除锈斑、油渍、污垢、切削液和研磨剂等,以保证不阻碍加热和冷却,不影响介质和气氛的纯度。另外,在热处理后也常需清洗,以去除零件表面残油、残渣和炭黑等附着物,以保证热处理零件清洁度、防锈和不影响下道工序加工等要求。清洗设备主要有一般清洗机、超声波清洗设备、脱脂炉清洗设备、真空清洗设备。根据各个清洗设备的用途并结合本设计中的零件的具体情况,本设计中的零件为小型的凹模,所以可以选择一般清洗设备中的间歇式清洗设备就能满足要求。为满足清洗效果和保护环境,清洗机应具备水过滤装置、撇油装置和雾气处理装置。此外,金属清洗剂选择合成洗涤剂,其中含有表面活性剂,可渗入零件的油膜内起清洗乳化作用,成本低且效果好。清洗设备如下图所示:

第14 页 共24页

6.2 清理及强化设备

零件经过热处理后,尤其是淬火回火之后,表面有氧化皮和粘着物,需要一定的设备将其清除掉,所以就应该在热处理后通过清理设备将工件表面的氧化皮和粘着物清理掉,防止对工件的性能及质量等造成影响。如果要在清理氧化皮的同时使零件获得良好的表面和提高工件表面的强度,可以利用抛丸机器或喷嘴将钢丸高速射向零件表面,通过钢丸的冲击作用清除零件表面的氧化物和粘着物并同时达到强化作用,提高零件的疲劳寿命。常用的清理设备有机械式抛丸和气力、液力喷丸(砂)。根据本设计中工件的实际情况选择一台机械式抛丸机器就可以同时满足清理工件热处理后工件表面的氧化皮和使工件表面强化,下图是机械式抛丸机的结构示意图。

6.3 热处理用夹具

第15 页 共24页

当工件在热处理炉中进行加热时,为了能够更好地使工件各个部位受热均匀,同时也为了方便热处理工作人员的操作,需要选择合适的辅助工具,如夹具、垫具等。由于本设计中的工件是一个长方体块,尺寸较小;同时为满足淬火过程的顺利进行,选择如下所示的垫具和夹具。

垫具

夹具

7 检验设备及方法选择

7.1 退火后的检验 7.1.1 外观

退火工件表面不能有裂纹及伤痕等缺陷。 7.1.2 硬度

退火后若硬度不均(组织不均匀)将影响切削性能和最终热处理质量。表面硬度的误差范围见下图:

第16 页 共24页

所以,在本设计中的凹模淬火后的硬度值误差为25HBS。根据手册查得,要求9Mn2V在球化退火后的硬度值为≤229HBS。选择一台布氏硬度计进行检测即可。

7.1.3 金相检验

低合金工具钢球化退火后正常组织为均匀分布的球化体。若组织中有点状和细片状珠光体或分布不均匀的粗大球化体及粗片状珠光体,都是不正常组织。碳化物网要求小于等于2级,珠光体为2~5级。但是对于一条成熟的生产线来说,此项检验室可以省略。在本设计中为可靠做保证,根据相关手册,选择一台低温金相显微镜即可。

其中在制作金相试样的过程中,采用简单方便的冷酸浸蚀试验法来显示金相组织,根据冷酸浸蚀溶液成分及使用范围(如下表)选择合适的酸浸蚀剂:

编号 1 2 3 4 5 6 7 8 9 成分 盐酸500mL、硫酸35、硫酸铜150 氯化高铁200、硝酸300、水100 盐酸300、氯化高铁500、加水至1000 10%~20%过硫酸铵水溶液 10%~40%(容积比)硝酸水溶液 氯化高铁饱和水溶液加少量硝酸(每500溶液加10硝酸) 硝酸1份、盐酸3份 硫酸铜100、盐酸和水个500 盐酸60、盐酸200、氯化高铁、过硫酸铵30、水50 适用范围 钢与合金 碳素结构钢 合金钢 合金钢 精密合金 高温合金 第17 页 共24页

10 100~350工业氯化铜氨,水1000 碳素结构钢 合金钢 7.2 淬火回火后的检验 7.2.1 外观

工件表面不允许有裂纹和有害的伤痕(必要时可用磁粉探伤或其他无损检测方法检测)。锻造余热淬火工件,表面不能有折叠等缺陷。 7.2.2 硬度

硬度必须满足技术要求61~63HRC,表面硬度的误差范围,根据不同类型的工件,不能超过下图所示:

通过表中可以查得,本设计中对零件表面硬度误差范围的允许值为4HRC。选用洛氏硬度计进行硬度的检验。根据热处理手册相关资料,洛氏硬度计的压头为金刚石圆锥,预载荷为100N,总载荷为1500N。 7.2.3 畸变

淬火回火的畸变允许值不得超过下图数据所示,本设计中的零件在淬火后的最大弯曲允许值为0.5mm:

第18 页 共24页

8 热处理缺陷分析

8.1 退火缺陷分析 8.1.1 硬度过高

由于常在碳质量分数大于4.5%的中、高碳钢中出现硬度过高的现象,产生的原因主要有:

(1)、冷却速度快或等温温度低,组织中珠光体片间距变细,碳化物弥散度增大或球化不完全。

(2)、某些高合金钢等温退火时,等温时间不足,随后冷至室温的速度又快,产生部分贝氏体活马氏体转变,是硬度升高。

(3)、装炉量过大,炉温不均匀。 8.1.2 球化不完全

对于共析钢、过共析钢球化退火组织中有片状珠光体,即球化不完全。 (1)、细片状珠光体+点状珠光体,产生原因是退火温度偏低或保温时间不足,原始组织中细片状珠光溶解不完全,或等温温度低、冷却速度快,碳化物弥散度大。

(2)、粗片状珠光体+球状珠光体,由于退火温度高火保温时间过长,未溶碳化物少,冷却速度又缓慢或等温温度偏高引起的。 8.1.3 球化不均匀

过共析钢球化退火后有时存在粗大的碳化物,出现碳化物不均匀现象。其原因

第19 页 共24页

是球化退火前未消除网状的碳化物在球化退火时发生熔断、聚集形成的。球化退火前通过正火消除网状碳化物可使缺陷消除。 8.1.4 粗大魏氏组织

加热温度过高,奥氏体晶粒粗大,冷速又较快的中碳钢中常出现粗大魏氏组织,其铁素体呈片状按羽毛或三角形分布在原奥氏体晶粒内。可通过完全退火或重新正火是晶粒细化加以消除。 8.1.5 退火石墨

碳素工具钢和低合金工具钢,退火加热温度过高或温度时间过长,或者多次返修退火,组织中出现石墨碳,并在其周围形成铁素体。具有石墨碳的退火工件,韧性低,断口呈灰黑色,又称黑脆。工件淬火时易形成软点,造成工模具崩刃或早期磨损。这种缺陷一般可作报废处理,也可通过扩散退火+重新正常退火挽救。 8.2 淬火缺陷分析 8.2.1 淬火畸变

淬火畸变形成的原因主要有以下几点:

(1)、体积变化,热处理前后各种组织比体积不同时引起体积变化的组要原因,其中马氏体→贝氏体→珠光体→奥氏体的比体积依次减小。

(2)、形状畸变,工件各部位相对位置或尺寸发生改变,主要是由于加热温度不均,形成的加热应力引起畸变或工件在炉中放置不合理,在高温下常因自重产生蠕变畸变。另外就是加热时,随加热温度升高,钢的屈服强度降低,已存在于工件内部才残余应力达到高温下的屈服强度时,就会引起工件不均匀塑性变形而造成形状畸变和残余应力松弛,淬火冷却时的不同时性形成的热应力和组织应力使工件局部塑性变形。

可以通过采用合理的热处理工艺,对于复杂或者合金含量高的工件要进行预热等;合理设计零件,防止出现直棱直角和截面突变等不合理的情况;合理的锻造和预先热处理改善原始组织,消除残余应力,从而减小淬火畸变。 8.2.2 淬火开裂

淬火开裂的原因有很多,比如说和热处理工件的形状,材质,热处理工艺,原

第20 页 共24页

始组织,材料本身,加热冷却速度的控制等等。可以通过改进工件结构,截面力求均匀,不同截面处应有圆角过渡,尽量减少不通孔、尖角,避免应力集中引起的开裂;合理选择钢材;避免有显微裂纹及严重非金属夹杂物和碳化物偏析的原材料;争取进行预先热处理,避免正火、退火组织缺陷;正确选择热处理工艺参数;合理选用淬火介质和淬火方法;对工件易开裂部位经行局部包扎并淬火后应及时回火或等温回火。 8.2.3 硬度不足

淬火硬度不足原因及控制措施:

序号 1 2 3 4 5 6 7 淬火硬度不足的原因 介质冷却能力差,工件表面有铁素体、托氏体等非马氏体组织 淬火加热温度低,或预冷时间长,淬火冷却速度低,出现非马氏体组织 控制措施 1)采用冷速较快的淬火介质 2)适当提高淬火加热温度 1)确保淬火加热温度正常 2)减少预冷时间 钢的淬透性差,且工件截面尺寸大,不能淬硬 采用淬透性好的钢 高碳高合金钢淬火加热温度较高,残留奥氏体过量 等温时间过长,以前奥氏体稳定化 表面脱碳 合金元素内氧化,表层淬透性下降,出现托氏体等非马氏体而内部则为马氏体组织 减低淬火加热温度或采用深冷处理 严格控制分级或等温时间 采用可控气氛加热或其他防脱碳措施 1)减低炉内气氛中氧化性组分含量 2)选用冷速快的淬火介质 8.2.4 软点

淬火软点产生原因及控制措施:

序号 1 2 3 软点形成原因 淬火时工件表面气泡未及时破裂致使气泡处冷速降低,出现非马氏体组织 工件表面局部的氧化皮、锈斑或其他附着物(涂料)淬火时未剥落,是冷却速度降低 原始组织不均匀,有严重的带状组织或碳化物偏析 控制措施 1)增加介质与工件的相对运动 2)控制水温和水中的杂质(油、皂类) 淬火前清理工件表面 原材料进行锻造和预先热处理,是组织均匀化 8.3 回火缺陷分析

回火缺陷产生原因及控制措施:

第21 页 共24页

序号 1 2 3 4 回火缺陷 回火硬度偏高 回火硬度低 回火畸变 回火硬度不均 产生原因 回火不足(回火温度低、回火时间不够) 1)回火温度过高 2)淬火组织中有非马氏体 淬火应力回火时松弛引起畸变 回火炉温不均、装炉量过多炉气循环不良 1)在回火脆性区回火 2)回火后未快冷引起第二类回火脆性 回火加热速度过快,表层产生多向拉应力 淬火后未及时回火形成显微裂纹,在回火时裂纹发展至断裂 带有残盐的零件回火前未及时清洗 控制措施 提高回火温度、延长回火时间 1)降低回火温度 2)改进淬火工艺,提高淬火硬度 加压回火或趁热校直 炉内应有气流循环风扇或减少装炉量 1)避免第一类回火脆性区回火 2)在第二类回火脆性区回火后快冷 采用较缓慢的回火加热速度 减少淬火应力,淬火后应及时回火 回火前应及时清洗残盐 5 回火脆性 6 7 8 网状裂纹 回火开裂 表面腐蚀 9 结束语

通过近三周的课程设计,从对零件图的分析开始到最后的热处理工艺卡的填写,过程中熟悉了对零件热处理的要求(加热速度、加热温度、保温温度、保温时间、冷却方式以及冷却速度等),对热处理这门课程有了更加系统、全面、深刻的认识,同时对自己也是一种能力上的培养。通过在辅导老师的悉心指导下,使我对课本知识的进一步完善,也进一步纠正了课程设计中的一些错误。总之,本次课程设计让我熟悉了热处理设计的程序而且了解了热处理设计的关键和最重要的地方,同时对热加工和对零件材料的热处理又有了更深刻的了解。

第22 页 共24页

参考文献

[1] 孙大涌. 热处理手册(第三版).北京:清华大学出版社,2001

[2] 全国热处理标准化技术委员会编. 金属热处理标准应用手册.北京:机械工业出版社,2005

[3] 崔昆主编. 钢铁材料及有色金属材料.北京:机械工业出版社,1980 [4] 合金钢钢种手册. 北京:冶金工业出版社

[5] 夏立方编. 金属热处理工艺学.哈尔滨工业大学出版社,2008 [6] 吉泽升. 热处理炉. 哈尔滨工业大学出版社.2008

[7] 吴承建.陈国良.强文江编. 金属材料学.冶金工业出版社,2009 [8] 工程材料 [9] 模具制造工艺 [10] 固态相变原理,1987

第23 页共24页

工艺卡片填写

通用热处理工艺卡

零件名称:凹模 零件号: 热处理工艺卡片 材料:9Mn2V 工序号: 处理前要求:要求工件洁净,形状无突变,并且对厚度小的地方采用石棉防护。 热处理技术要求: 硬度:表面 63 心部装炉方法及数量:根据热处理过程中相应炉型的有效加热范围和装炉时工件之间的间隔距离计算出相应热处理设备的装入量,工件在热处理设备中需要垫具在油淬真空炉中的装炉量为5。 保证其受热均匀,通过所选夹具装炉。在中温箱式电阻炉中的装炉量为10~12;61HRC 硬化层深度: mm 允许变形量:0.5mm 工 步 号 名称 设备 工装、夹具 加 热 温度/℃ 时间/min 保 温 温度/℃ 时间/min 冷 却 介质 温度/℃ 以≤30℃1 退火 RX3—15—9 750~760℃ 240 680~690℃ 240 空气 /h冷却至550空冷 FH·H—20 RX3—15—9 校对: 760~780℃ 150~180℃ 审定: 760~780℃ 150~180℃ 批准: 冷至30 油淬 油温空冷 180 空气 出炉空冷 更改日期 更改单号 更改标记 更改者 2 淬火 60 3 回火 60 编制:沈亚锋

第24 页 共24页

本文来源:https://www.bwwdw.com/article/rwog.html

Top