PLC恒压供水控制系统毕业论文

更新时间:2023-03-08 07:08:50 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

广东轻工职业技术学院

(继续教育学院)

机电工程系

毕业设计(论文)

题 目: P L C 恒 压 供 水 控 制 系 统

专 业: 电 气 自 动 化

设计指导老师: 颜 学 定

毕业设计学生: 黄 志 孝

学 号: 10833076200101189

毕业设计日期:2009年11月9日~2009年12月22日

P L C恒压供水控制系统设计

目录

目录 .................................................................................................................................................. 1 摘要 .................................................................................................................................................. 3 Abstract ....................................................................................................................................... 4 1.设计任务书 ................................................................................................................................... 5

1.1设计题目: ......................................................................................................................... 5 1.2设计目的 ............................................................................................................................. 5 1.3设计内容及要求 ................................................................................................................. 5 1.4设计进程安排 ..................................................................................................................... 6 2.PLC恒压供水控制系统 ................................................................................................................ 7

2.1引言 ..................................................................................................................................... 7 2.2恒压供水PLC控制系统的基本策略 ................................................................................. 7 2.3恒压供水系统的基本构成 ................................................................................................. 7 2.4 工作原理 ............................................................................................................................ 8 3.PLC的概述 .................................................................................................................................. 10

3.1PLC的组成 ......................................................................................................................... 10 3.1.1PLC的输入 ..................................................................................................................... 10 3.1.2 PLC的输出 ................................................................................................................. 10 3.1.3 PLC的控制机制 ......................................................................................................... 10 3.1.4 PLC的定义 ................................................................................................................... 13 3.1.5 PLC的特点 ................................................................................................................... 13 3.1.6 PLC的性能指标 ........................................................................................................... 14 3.1.7 PLC的分类 ................................................................................................................. 14 3.2 PLC工作原理 ................................................................................................................... 15 3.2.1 循环扫描 .................................................................................................................... 15 3.2.2 I/O响应时间 ............................................................................................................. 17 3.2.3 PLC中的存储器 ......................................................................................................... 17 3.3 PLC的编程语言 ........................................................................................................... 18 3.3.1 PLC的编程结构功能图 ............................................................................................. 18 3.3.2 梯形图编程语言 ........................................................................................................ 19 3.4 PLC的分类 ....................................................................................................................... 21 3.4.1 按I/O点数容量分类 ................................................................................................ 21 3.4.2 按结构形式分 ............................................................................................................ 22 3.5 PLC与继电器控制系统的区别 ..................................................................................... 23 3.6 PLC控制系统的结构 ..................................................................................................... 24 3.6.1 单机控制系统 .............................................................................................................. 24 3.6.2 集中控制系统 ............................................................................................................ 25 3.6.3 分散控制系统 ............................................................................................................ 26 3.7 PLC网络及特点 ............................................................................................................... 27 2.7.1 网络概述 .................................................................................................................... 27 3.7.3 网络控制系统PLC的影响 ........................................................................................ 27 3.7.4 网络控制系统的设计 ................................................................................................ 28

1

P L C恒压供水控制系统设计

3.7.5 访问控制技术 ............................................................................................................ 28 4 .系统硬件设计 ........................................................................................................................... 29

4.1 系统控制要求 ................................................................................................................ 32 4.2 系统选型 ........................................................................................................................ 32 4.3 PLC模拟量控制单元的配置以及应用 ......................................................................... 34 4.3.1 EM235模拟量工作单元性能指标 ............................................................................. 34 4.3.2 校准及配置 ................................................................................................................ 36 4.3.3 EM235的安装使用 ..................................................................................................... 36 4.3.4 EM235工作程序编制 ................................................................................................. 36 5.水泵电机的选择 ......................................................................................................................... 39

5.1.概述 .................................................................................................................................. 39 6.SMART-1151压力变送器 ............................................................................................................ 40

6.1.1151型变送器 ................................................................................................................. 40 6.2.工作原理 .......................................................................................................................... 40 6.3.管网压力 .......................................................................................................................... 41 设计总结......................................................................................................................................... 43 致谢 ................................................................................................................................................ 44 参考文献......................................................................................................................................... 45

2

P L C恒压供水控制系统设计

摘要

利用自动控制程序PLC恒压控制三台水泵电机供水给生活小区生活用水。采用可编程控制器(PLC)构成控制系统进行优化控制泵组的运行,并自动调整泵组的运行台数,完成供水压力的要求,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制泵电动机的投运台数工作而达到给水总管压力稳定在设定的压力值上。供水系统选用原则水泵扬程应大于实际供水高度,水泵流量总和应大于实际最大供水量。

关键词:PLC,自动控制系统,控制指令

3

Abstract

Constant Pressure Control Automation PLC program using three water pump motor water to the living quarters for domestic use. A programmable controller (PLC) constitute a control system to optimize control of the operation of pumping systems and pumping systems automatically adjust the number of operating units to complete the requirements of the water supply pressure in the pipe network to stabilize the water flow changes the pressure and energy conservation purposes. System control objective is to pump the water mains pressure water supply system set pressure value of the mains pressure and feedback to compare the actual values, the difference between the input CPU computing processing, issuing control instructions to control the pump motor is put into operation in the number of work units to achieve the water supply mains pressure to stabilize at the set pressure value. Water supply systems use the principle of pump head should be larger than the actual water height, water pump flow rate should be larger than the sum of the maximum actual water supply. Key words: PLC, Automatic control system, Control instructions.

P L C恒压供水控制系统设计

1.设计任务书

1.1设计题目:

PLC控制恒压供水系统

1.2设计目的

1) 毕业设计是学校学习的最后一个环节,也是培养学生综合运用所学的基本知识、基本理论和基本技能,独立进行工程设计、科学研究和专业基本训练,解决实际工程问题的一个很重要环节。

2) 通过毕业设计,培养学生树立正确的设计、思考和研究思想;理论联系实际和严谨、高度合作协作的工作态度。

3) 通过毕业设计,使学生在查阅文献资料、收资调研、工程计算、数据处理等各个方面的能力得到基本的训练。

4) 利用现代化科学技术程序系统控制恒压供水,使用自动化技术方便工作,熟悉一种具体的现代自动控制系统产品性能,学习其设计及使用方法,巩固所学的自动控制原理技术,可编程制空器、机电一体化技术等各方面理论知识,培养高新技术综合应用能力。

1.3设计内容及要求

1)

随着PLC自动控制技术的发展和人们对生活饮用水品质要求的不断

提高,为了解决住户较大变化的生活用水及保持供水压力,保证生活用水的质量,避免克服水锤效应及第二次污染造成供水污染的问题,PLC控制恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。PLC控制恒压供水系统很好的解决了旧设备需要频繁检修的问

题,既体现了PLC控制恒压供水的技术优势,同时又有效的节省了资金。 本系统能根据用户的用水量对供水压力的变化,进行自动调节电动机的工作从而改变供水量,使得供水压力恒定在一个设定压力值上,以满足用户的用

5

P L C恒压供水控制系统设计

水要求。

运行时若一个主泵在运行下不能满足用户的供水需要时,系统将会自动增加一个备用泵投入运行与主泵共同进行联合供水,增大管道供水的流量,使供水压力迅速恢复并恒定在设定值上。随着用水量的减少,压力上升到上限时(即是由主泵与备用泵同时运行供水时),系统则会将备用泵退出工作,只由主泵单独工作运行供水。若管网压力仍不断上升,压力再次上升到上限时,系统将主泵停止退出工作,启动休眠泵运行供水,若用水量为零时,各泵退出运行处于休息状态。当管网压力下降时再次重新启动供水系统,如此循环地工作。

2) 为了使主泵与备用泵的平均工作时间相同,防止泵发生锈死现象,因此系统

应具有主泵与备用泵定时切换工作功能。

3) 具有两种供水控制模式,以满足用户不同的用水要求,实现自动控制与手动

控制。

4) 要求具有报警保护功能和管网超/欠压检测保护功能,以保障供水系统的安

全。

1.4设计进程安排

1) 研究设计内容与要求,听从设计辅导师的辅导。 2) 收集资料 3) 提出初步设计方案 4) 绘制图纸 5) 编写设计说明书

6

P L C恒压供水控制系统设计

2.PLC恒压供水控制系统

2.1引言

传统的生活及生产供水的方法是通过建造水塔维持水压。但是,建造水塔需要花费财力,水塔还会造成水的二次污染。那么,可不可以不借助水塔来实现恒压供水呢?当然可以,但是要解决水压随用水量的大小变化的问题,通常的办法是:用水量大时,增加水泵数量或提高水泵的转动速度以保持管网中的水压不变,用水量小时又需做出相反的调节。这就是恒压供水的基本思路。随着技术的进步采用PLC的运用控制为水泵自动工作连续调节提供了方便。

2.2恒压供水PLC控制系统的基本策略

采用可编程控制器(PLC)构成控制系统进行优化控制泵组的运行,并自动调整泵组的运行台数,完成供水压力的要求,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制泵电动机的投运台数工作而达到给水总管压力稳定在设定的压力值上。供水系统选用原则水泵扬程应大于实际供水高度,水泵流量总和应大于实际最大供水量。

2.3恒压供水系统的基本构成

恒压供水泵站一般需要设多台水泵及电机,一台主一台备有和一台休眠用的如(图一)。这比设单台水泵电机节能而可靠。单台电机及水泵时,它们的功率必须足够大,在用水量少时来开一台大电机肯定是浪费的,电机选小了用水量大时供水量则相应的会不足。而且水泵与电机维修的时候,备用是必要的。而我采用的办法就是根据用户的用水量对供水压力的变化,进行自动调节电动机的工作从而改变供水量,使得供水 压力恒定在一个设定压力值上,以满足用户的用水需要,广泛应用于多层住宅小区生活消防供水系统。恒压供水系统很好的解决了

7

P L C恒压供水控制系统设计

旧设备需要频繁检修的问题,既体现了PLC控制恒压供水的技术优势,同时有效的节省了资金。

2.4 工作原理

1) 自动工作原理

采用了PLC自动控制电机工作,只要功能有在正常用水的情况下主,备泵能够自动转换轮流工作,如此既可以延长电机使用寿命也可以防止备用泵长久不使用而生锈的现象,在不同季节的时候用水量不同的情况下可以根据不同水位不同压力自动控制电机工作,当用水量少水位保持高上限为的状态下,系统就自动调整电机停止或使用休眠泵工作,如果水位长时间在高位,使用电机停止工作。当到了用水量多是时候,水位就会降低到下限位,系统就会自动控制主水泵工作,如果用水量过于繁忙时水位一直停止下限位时候,系统就会自动启动主,备两个水泵工作以确保正常供水,又回到高水位上限位时保持一定时间时候备用水泵就可以停止工作,又自动转换高水位工作状态。如此反复自动工作既方便又可以节省资源。想了解工作情况状态可以从指示灯来了解,表达明确。维修方面既方便又可靠,可以使用手动控制,不管是那台电机出现问题都不会影响到正常供水,可以单独关闭进行维修,而另台电机继续工作。 2) 工作步骤

首先合上电源开关QS, PLC电源得电,写入控制程序如图(二)所示。按下SB0程序开始运行读取,启动主水泵工作,首先KM1线圈得电让电机工作做准备,KM1常开触点闭合自锁工作,,工作指示灯亮。线圈KM3得电,电机星型降压启动确保电机在启动瞬间电流过大而损坏。时间继电器T1得电开始计时为全压工作做准备,时间继电器计时到30秒后,常开触点闭合,线圈KM2得电全压正常工作,常闭触点断开,线圈KM3失电,降压复位。时间继电器T0得电计时,当计时到4个小时的时候,常闭触点断开,线圈KM1失点,主水泵停止工作,所有触点复位。常开触点闭合,KM4线圈得电让电备用电机转换工作做准备,KM4常开触点闭合自锁工作,工作指示灯亮。线圈KM6得电,备用水泵星型降压启动,继电器T3得电开始计时为全压工作做准备,继电器T3计时到30秒后,常开触点闭合,线圈KM5得电全压正常工作,常闭触点断开KM6失电,降压复位。继电

8

P L C恒压供水控制系统设计

器T2得电计时,当计时到4个小时的时候,常闭触点断开,线圈KM4失电,备用水泵停止工作,所以触点复位。同时常开触点闭合,KM1线圈得电主电机转换工作,。如此反反复复正常轮流转换工作,可以增长电机使用寿命。停止工作按下SB1,SB2即可实现,所以线圈,触点复位。

当用水量少的时候,水位上升到上限位时,上限位触点动作,上限工作指示灯亮,开始检测。当检测到是电机M1,M2电机同时在工作时,时间继电器T4得电计时,计时到30秒后关断2号备用电机M2,1号电机M1继续工作。当检测到是电机M1工作,电机M2停止状态时,时间继电器T5得电计时,当计时到30秒时关断1号主电机M1,启动休眠电机M3工作。当检测到3号休眠电机M3工作M1,M2停止工作时,时间继电器T6得电计时,当计时到30秒时关断休眠电机M3,所以电机进行休息状态。当检测到电机M1,M2.M3.都在停止状态仍保持在上限位时,报警指示工作。

当用水量多的时候,水位下降到下限位时,下限位触点动作,下限工作指示灯亮,开始检测。当检测到是电机M1,M2,M3,电机同时在停止状态时,时间继电器T10得电计时,计时到30秒后启动1号主泵电机工作。当检测到是电机M1工作电机M2,M3停止状态时,时间继电器T11得电计时,当计时到30秒时启动2号备用电机M2与1号电机M1同时工作,以确保水量的供应。当检测到电机M1,M2.电机.都在启动状态仍保持在下限位时,报警指示工作。 3) 保护装置

整个电路系统中有短路,过流,过热,管网超/欠压检测,报警等保护功能。如图(一)中所示。

1.短路保护,电路中采用了保险丝FU来实现,当电路发生电路时,保险丝动作切断电路确保电路安全。

2.过流保护,电路中采用了星型降压启动,三角型全压工作来实现。只要防止电机在启动瞬间电流过大而损坏电机。

3.过热保护,电路中采用了热继电器RF来实现。当电机使用发生过热温度时,热继电器的常闭触点就动作断开,切断电源来确保电路安全。

9

P L C恒压供水控制系统设计

3.PLC的概述

3.1PLC的组成 3.1.1PLC的输入

通过对继电器控制特点的介绍和最初通用汽车公司提出的要求分析。PLC要想取代继电器控制,首先要解决外部设备的直接输入问题。由于当时主要集中在开关量控制,也就是开关量(触点的开闭状态)如何直接接入PLC并被PLC所识别,对此就需要解决以下几个问题:有源接入,无源接入,绝缘问题,隔离问题和互相干扰问题。PLC就是一个计算机控制系统,在其发展过程,人们曾将计算机直接用于工业控制,但是由于以下两大问题没有解决好而难以发展:一是I/O(输入/输出)问题,计算机不能直接和工业现场设备连接现在了应用;二是计算机的I/O功能,开关逻辑处理不够丰富和强大。现在的PLC成功的解决了这两个方面的问题,可以让PLC和外部设备直接进行物理的连接。计算机的内部提供了丰富的从位逻辑到双字运算的强大的运算功能,使其能够完成复杂的控制功能,这也是PLC能够迅速发展的原因。

3.1.2 PLC的输出

输出问题主要是接点的驱动能力问题,或者说是带负载能力和输出方式的问题。输出动作次数的限制,是保证PLC的输出接点能否驱动接触器、电磁阀这样的控制执行元器件的问题至少要能直接驱动中间继电器。现在的PLC产品已经完全有能力驱动这些元器件,并提供了多种输出方式且动作次数可保证万次无故障的产品。

3.1.3 PLC的控制机制

PLC已经完全取代继电器控制系统。只要对其控制机制有了准确的理解,才能对其持续的开发并创造性的使用它。I/O电路已经保证了PLC与现场设备的直接连接,并在内部寄存器存储了这些状态。但是,为了取代继电器的控制,更重

10

P L C恒压供水控制系统设计

要的是如何组织和使用这些开关量,从而达到软件程序代替硬件连线的目的。在这里通过对继电器的控制的电路的特点的介绍,已经知道继电器控制电路的特点在于各个控制单元是否动作是由其接点条件控制的,并不受其前后位置的影响。同一时刻,可有多个不同的控制单元继电器的动作(翻转),控制的结果、逻辑动作顺序也是由接点条件来控制的。这于计算机顺序执行的工作的特点是矛盾的。主要体现在:一是乱序,只要条件满足就执行;而另一个是顺序执行。PLC充分利用了计算机存储程序的思想和高速的特点,采用了控制系统中的离散控制方式,使它的控制能够完全代替继电器的控制。具体的说就是将连续的控制用离散的控制代替,如下式:

Y(n)=f(x(n-1),y(n-1))

式中,Y(n)为某一时间段的输出值; Y(n-1)为上一时间段的输出值; X(n-1)为上一时间段某一时刻的输入值; F为他们应满足的控制关系。

即某一时间段的输出完全取决于上一时间某一时刻的输入和上一时间段的输出。 至于上一时间段的输出,在参加计算的时候,只是存储在映像寄存器中的输出结果,执行运算过程中并不修改端子的输出值。真实的输出已表现在端子的接点上,并要保持一个时间段,也就是采取集中输出的方式,在计算的过程中完全可以使用或修改其映像寄存器中的值而不会对先阶段的输出产生影响。这样只要时间段足够短,并且PLC周而复始的运行着就完全可以模仿继电器的控制并且取代它。

由于采用集中I/O的思想,其I/O状态存储在寄存器中,可以充分发挥计算机的强大逻辑家能力,以完成更复杂的控制功能。

如图1所示,PLC与通用计算机没有什么区别,只是一台增强了I/O功能的可与控制对象方便连接的计算机。其完成控制的实质是按一定算法进行I/O变换,并将这个变换物理实现,应用与工业现场。

(1)输入寄存器

输入寄存器可按为进行寻址,每一为对应一个开关量,其值反映了开关量的状态,其值的改变由相互如开关量驱动,并保持一个扫描周期。CUP可以读其值,

11

P L C恒压供水控制系统设计

但是不可以写或进行修改。 (2)输出寄存器

输出寄存器的每一位都表明了PLC在下一个时间段的输出值,而程序循环执行开始时的输出寄存器的值,表明的是上一时间段的真实输出值,在程序执行过程中,CPU可以读其值,并作为条件参加控制,还可以修改其值,而中间的变换仅仅影响寄存器的值。只有程序执行到一个循环的尾部时的值才影响下一时间段的输出,即只有最后的修改才对输出接点的真实值产生影响。

(3)存储器

存储器分为系统存储器和用户存储器。系统存储器存储的是系统程序,它是由厂家开发固化好了的,用户不能修改,PLC要在系统程序的管理下运行。用户存储器中存放的是用户程序和运行所需要的资源,I/O寄存器的值作为条件决定着存储器中的程序如何被执行,从而完成复杂的控制功能。

(4)CUP单元

CUP单元控制着I/O寄存器的读、写时序,以及对存储器单元中的程序的解释执行工作,是PLC的大脑。

(5)其他单元接口

其他单元接口用语提供PLC与其他设备和模块进行连接通信的物理条件

系统存储器...........用户存储器CUP............路电入输输入寄存器输出寄存器输出电路输入量其他接口电路

图1 PLC的组成

12

P L C恒压供水控制系统设计

3.1.4 PLC的定义

最初,可编程逻辑控制器(Programmable Logic Controller)简称PLC。只能进行计数、定时及开关量的逻辑控制。1987年2月,国际电工委员会(IEC)对可编程控制器的定义是:可编程控制器是一种数学运算操作的电子系统,专为在工业环境下的应用而设计。它采用一类可编程序的存储器,用于其内部存储程序、执行逻辑运算、顺序控制、定时、计数和算术操作等面向拥护的指令,并通过数字式和模块式输入/输出,控制各种类型的机械和生产过程。可编程序控制器及其有关外部设备,都按易于与工业控制系统连成一个整体、易于扩充功能的原则设计。

3.1.5 PLC的特点

(1)可靠性高。在I/O环节,PLC采用了光电隔离、滤波等多种措施。系统程序和大部分的用户程序都采用EPROM存储,一般PLC的平均无故障工作时间可达几万小时以上。

(2)控制功能强。PLC采用的CUP一般是具有较强位处理功能的为处理机,为了增强其复杂的控制功能和连网通讯等管理功能,可以采用双CPU的运行方式,使其功能得到极大的增强。

(3)编程方便易学。第一编程语言(梯形图)是一种图形编程语言,与多年来工业现场使用的电器控制图非常相似,理解方式也相同,非常适合现场人员学习。

(4)使用于恶劣的工作环境。采用封装的方式,适合于各种震动、腐蚀、有毒气体等的应用场合。

(5)与外部设备连接方便。采用统一接线方式的可坼装的活动端子排,提供不同的端子功能适合于多种电器规格。 (6)体积小、重量轻、功耗底。 (7)性价比高。

(8)模块化结构,扩展能力强。根据现场的需要进行不同功能的扩展和组装,一种型号的PLC可用于控制从几个I/O点到几百个I/O点的控制系统。

13

P L C恒压供水控制系统设计

(9)维修方便,功能更灵活。程序的修改就以意味着功能的修改,因此功能的改变非常灵活。

3.1.6 PLC的性能指标

(1)存储容量

这里专指用户存储器的存储容量,它决定了用户所编程序的长短。大、中、小型PLC的存储容量变化范围一般为2KB~~2MB。 (2)I/O点数

I/O点数,即PLC面板上的I/O端子的个数。I/O点数越多,外部可以连接的I/O器件就越多,控制规模就越大。它是衡量PLC性能的重要指标之一。 (3)扫描速度

扫面速度是指PLC执行程序的快慢,是一个重要的性能指标,体现了计算机控制取代继电器控制的吻合程度。从自动控制的观点来看,决定了系统的实时性和稳定性。 (4)指令的多少

她是衡量PLC能力强弱的标志,决定了PLC的处理能力、控制能力的强弱。限定了计算机发挥运算功能、完成复杂控制的能力。 (5)内部寄存器的配置和容量

它直接对用户编制程序提供支持,对PLC指令的执行速度及可完成的功能提供直接的支持。 (6)扩展能力

扩展能力包括I/O点数的扩展和PLC功能的扩展两方面的内容。 (7)特殊功能单元

特殊功能单元种类多,也可以说PLC的功能多。典型的特殊功能单元有模拟量、模糊控制连网等功能。

3.1.7 PLC的分类

不同的分类标准会造成不同的分类结果,PLC常用的分类方式有如下两种。 按其I/O点数一般分为微型(32点以下)、小型(128点以下)、中型(1024

14

P L C恒压供水控制系统设计

此为了充分利用存储器容量,使扫描时间尽可能短,利用梯形图编程时应限制触点之间的距离,并使网络左上边这部分空白最少。其中,串联触点较多的支路要写在上面,并联支路应写在左边,线圈放于触点的右边。

如图4所示是用PLC控制的梯形图程序,可完成与继电器控制的电动机直接起、停(起、保、停)继电器控制电路图相同的功能。

梯形图和继电器控制电路图很相似,这是可以用PLC控制取代继电器控制的基础,可以把经过实践证明设计是成功的继电器电路图进行转换,从而设计出具有相同功能的PLC控制程序,充分发挥PLC的功能完善、可靠性高、控制灵活的特点。当然,它们还是存在着本质上的区别,主要表现如下所述。

    按钮 的常按钮 的常开触点        闭触点 继电器 的线圈    继电器 的常开触点 图4 梯形图

(1)继电器控制电路中使用的继电器是物理的元器件,继电器与其他控制电器之间的连接必须通过硬件连接线来完成。PLC中的继电器是内部的寄存器位,称为“软继电器”,它具有物理继电器相似的功能。当它的“线圈”通电时,其所属的常开触点闭合,常闭触点断开;当它的线圈断电时,其所属的常开触点和常闭触点均恢复常态。PLC梯形图中的接线称为“软接线”,这种“软接线”是通过编程来实现的,具有更改简单、调试方便等特点。而继电器控制电路图是点线连接图,相对来素施工困难、更改费力。

(2)PLC中的每一个继电器都对应着一个内部的寄存器,由于可以随时不受限地读取其内容,所以,可以认为PLC的继电器有无数个常开、常闭触点供用户使用。PLC梯形图中的触点代表的是“逻辑”输入条件、外部的实际开关、按钮或内部的继电器触点条件等。而物理继电器的触点个数是有限的。

(3)PLC的输入继电器是由外部信号驱动的,在梯形图中只能用其触点,这

20

P L C恒压供水控制系统设计

在物理继电器中是不可能的。线圈通常代表“逻辑”输出结果,如灯、电机启动器、中间继电器、内部输出条件等。

(4)继电器控制系统中是按照触点的动作顺序和是延迟逐个动作的,动作顺序与电路图的编写顺序无关。PLC按照扫描方式工作,首先采取输入信号,然后对所有梯形图进行计算,造成了宏观与动作顺序的无关,但是微观上在一个时间段上的是实际执行顺序与梯形图的编写顺序一致而不是无关的。

(5)PLC梯形图中的两根母线以失去原有的意义,它只表示一个梯形的起始和终了,并无实际电流通过,假象的概念电流只能从左向右流。

为了充分发挥CUP的逻辑运算功能,设置了大量的称为盒的附加命令,如定时器、计算器、格式转换、模拟量I/O、PID调节或数学运算指令等,充分的发挥了计算机的强大计算功能,他们与内部继电器一起完成PLC的各种复杂控制功能。

3.4 PLC的分类

PLC发展到今天,已经有了多种形式,而且功能也不尽相同,分类时,一般按以下原则来考虑

3.4.1 按I/O点数容量分类

一般而言,处理I/O点数越多,则控制关系就 比较复杂,用户要求的程序存储器容量比较大,要求PLC指令及其他功能比较多,指令执行的过程也比较快。按PLC的输入、输出点数的多少可将PLC分为以下三类。 (1)小型机

小型机PLC的功能一般以开关量控制为主,小型PLC输入、输出点数一般在256点以下,用户程序存储器容量在4K左右。现在的高性能小型PLC还具有一定的通讯能力和少量的模拟量处理能力。这类的PLC的特点是价格低廉,体积小巧,适合于控制单台设备和开发机电一体化产品。

典型的小型机有SIEMENS公司的S7-200系列、OMRON公司的CPM2A系列、MITUBISH公司的FX系列和AB公司的SLC500系列等整体式PLC产品。 (2)中型机

21

P L C恒压供水控制系统设计

中型PLC的输入、输出总点数在256~~2048点之间,用户程序存储器容量达到8K字左右。中型PLC不仅具有开关量和模拟量的控制功能,还具有更强的数字计算能力,它的通信功能和模拟量处理功能更强大,中型机比小型机更丰富,中型机适用于更复杂的逻辑控制系统以及连续生产线的过程控制系统场合。

典型的中型机有SIEMENS公司的S7-300系列、OMRON公司的C200H系列、AB公司的SLC500系列等模块式PLC产品。 (3)大型机

大型PLC的输入、输出总点数在2048点以上,用户程序储存器容量达到16K以上。大型PLC的性能已经与工业控制计算机相当,它具有计算、控制和调节的能力,还具有强大的网络结构和通信联网能力,有些PLC还具有冗余能力。它的监视系统采用CRT显示,能够表示过程的动态流程,记录各种曲线,PID调节参数等;它配备多种智能板,构成一台多功能系统。这种系统还可以和其他型号的控制器互联,和上位机相联,组成一个集中分散的生产过程和产品质量控制系统。大型机适用于设备自动化控制、过程自动化控制和过程监控系统。

典型的大型PLC有SIEMENS公司的S7-400、OMRON公司的CVM1和CS1系列、AB公司的SLC5/05等系列。

3.4.2 按结构形式分

根据PLC结构形式的不同,PLC主要可分为整体式和模块式两类。 (1)整体式结构

整体式结构的特点是将PLC的基本部件,如CUP板、输入板、输出板、电源板等紧凑的安装在一个标准的机壳内,构成一个整体,组成PLC的一个基本单元(主机)或扩展单元。基本单元上设有扩展端口,通过扩展电缆与扩展单元相连,配有许多专用的特殊功能的模块,如模拟量输入/输出模块、热电偶、热电阻模块、通信模块等,以构成PLC不同的配置。整体式结构的PLC体积小,成本底,安装方便。

微型和小型PLC一般为整体式结构。如西门子的S7-200 (2)模块式结构

模块式结构的PLC是由一些模块单元构成,这些标准模块如CUP模块、输入

22

P L C恒压供水控制系统设计

模块、输出模块、电源模块和各种功能模块等,将这些模块插在框架上和基板上即可。各个模块功能是独立的,外型尺寸是统一的,可根据需要灵活配置。

目前大、中型PLC都采用这种方式。如西门子的S7-300和S7-400系列。 整体式PLC每一个I/O点的平均价格比模块式的便宜,在小型控制系统中一般采用整体式结构。但是模块式PLC的硬件组态方便灵活,I/O点数的多少、输入点数与输出点数的比例、I/O模块的使用等方面的选择余地都比整体式PLC大的多,维修时更换模块、判断故障范围也很方便,因此较复杂的、要求较高的系统一般选用模块式PLC。

3.5 PLC与继电器控制系统的区别

PLC梯形图与继电器控制电路图非常相似,主要原因是 PLC梯形图大致上沿用了继电器控制的元件符号和术语,仅个别之处有不同。同时,信号的输入/输出形式及控制功能也基本上是相同的,但是PLC的控制与继电器的控制又有根本的不同之处,主要表现在以下几个方面。 (1)逻辑控制

继电器控制逻辑采用硬接线逻辑,利用继电器机械触点的串联或并联,及延时继电器的滞后动作等组合成控制逻辑,其接线多而复杂、体积大、功耗大、故障率高,一旦系统构成后,想改变或增加功能都很困难。另外,继电器触点数目有限,每个只有4——8个对触点。因此,灵活性和扩展性很差。而PLC采用存储器逻辑,其控制逻辑以程序方式存储在内存中,要改变控制逻辑,只需改变程序即可,故称为“软接线”。因此灵活性和扩展性都很好。 (2)工作方式

电源接通时,继电器控制电路中各个继电器都同时处于受控状态,即该吸合的都应该吸合,不该吸合的都因受某种条件限制不能吸合,它属于并行工作方式。而的控制逻辑中,各内部器件都处于周期性循环扫描过程中,属于串行工作方式。 (3)可靠性和可维护性

继电器控制逻辑使用了大量的机械触点,连线也多。触点开闭时会受到电弧的损坏,并有机械磨损,寿命短,因此可靠性和可维护性差。而PLC采用微电子技术,大量的开关动作由无触点的半导体电路来完成,体积小、寿命长、可靠性

23

P L C恒压供水控制系统设计

高。PLC还配有自监和监督功能,能检查出自身的故障,并随时显示给操作人员,还能动态的监视控制程序的执行情况,为现场调试和维护提供了方便。 (4)控制速度

继电器控制逻辑依靠触点的机械动作实现控制,工作频率底,触点的开闭动作一般在几十MS数量级。另外,机械触点还会出现抖动问题。而PLC是由程序指令控制半导体电路来实现控制,属于无触点控制,速度极快,一般一条用户指令执行时间在数量级,且不会出现抖动。 (5)定时控制

继电器控制逻辑利用时间继电器进行时间控制。一般来说,时间继电器存在定时精度不高,定时范围窄,且易受环境湿度和温度变化的影响,调整时间困难等问题。PLC使用半导体集成电路做定时器,时基脉冲由晶体震荡器发生,精度相当高,且定时时间不受环境的影响定时范围一般从0.001S到若干天或更长。用户和根据需要在程序中设定定时值,然后用软件来控制定时时间。 (6)设计和施工

使用继电器控制逻辑完成一项控制工程,其设计、施工、调试必须依次进行,周期长而且修改困难。工程越大着一点就越突出。而用PLC完成一项控制工程,在系统设计完成以后,现场施工和控制逻辑的设计(包括梯形图的设计)可以同时进行,周期短,且调试和修改都很方便。

从以上几个方面的比较可知,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、通用性强、设计施工周期短、调试修改方便,而且体积小、功耗低、使用维护方便。但是在很小的系统中使用时,价格要高于继电器系统。

3.6 PLC控制系统的结构

使用PLC可以构成多种形式的控制结构,下面介绍几种常用的PLC控制系统。

3.6.1 单机控制系统

单机控制系统是较普通的一种PLC控制系统。该系统使用一台PLC控制一个对象,控制系统要求的I/O点数和存储器容量都比较小,没有PLC的通讯问题,采样条件和执行结构都比较集中,控制系统的构成简单明了。

24

P L C恒压供水控制系统设计

如图5所示是一个简单的单机控制系统,图中PLC可以选用任何一种类型。在单机控制系统中由于控制对象比较确定,因此系统要完成的功能一般较明确,I/O点数、存储器容量等参数的余量适中即可等参数的余量适中即可。

P L C 控 制 对 象 图5 简单的单机控制系统

3.6.2 集中控制系统

集中控制系统用仪态功能强大的PLC监视、控制多个设备,形成中央集中式的控制系统。其中,各个设备之间的联络,连锁关系、运行顺序等统一由中央PLC来完成,如图6示

显然,集中控制系统比单机控制系统经济的多。但是当其中一个控制对象的控制程序需

要改变时,必须停止运行中央PLC,其他的控制对象也必须停止运行。当各个控制对象的地理位置距集中控制系统比较远时,需要大量的电缆线,造成系统成本的增加。为了适应控制系统的改变,采用集中控制系统时,必须注意选择I/O点数和存储器容量时要留有足够的余量,以便满足增加控制对象的要求。

25

P L C恒压供水控制系统设计

P L C 控制对象A 控制对象B 控制对象C

图6 集中控制系统

3.6.3 分散控制系统

分散控制系统的构成如图7所示,每一个控制对象设置一台PLC,各台PLC可以通过信号传递进行内部连锁、响应或发令等,或者由上位机通过数据通信总线进行通讯。

分散控制系统常用于多台机械生产线的控制,各个生产线之间有数据连接。由于各个控制对象都由自己的PLC进行控制,当其中一个PLC停止运行时不需要停止运行其他的PLC。

随着PLC性能的不断提高,由PLC担当低层控制任务,通过网络连接,PLC与过程控制相结合的分散控制系统将是计算机控制的重要发展方向。

与集中控制系统相比,分散控制系统的可靠性大大加强。具有相同I/O点数时,虽然分散控制系统中多用了一台或几台PLC,导致价格偏高,但是从维护、试运转或增设控制对象等方面来看,其灵活性要大的多,总的成本核算是合理的。

上机位 PLC A PLC B PLC C 控制对象 A 控制对象 B 控制对象 C 26

P L C恒压供水控制系统设计 图7 分散控制系统

3.7 PLC网络及特点 2.7.1 网络概述

分散控制系统的控制思想就是集中操作、分散操作。一个实际的工业控制过程中是比较复杂的,一个控制过程可能由多个控制任务完成。这些控制任务既有独立性,有与其他任务有联系,而这些相对独立的任务需要构成一个整体。当控制系统达到一定规模时,分散控制系统解决方案并不理想,因此许多厂家开发了自己的网络系统。虽然现在对网络的系统结构等问题还没有同意的标准,但是很显然,网络控制系统比分散控制系统更能准确的描述现实控制系统,并且控制、改变更加灵活,组态也更容易,能够实现管控一体化的控制思想。

3.7.2 网络工厂

随着低层控制单元PLC价格的减低、技术的成熟,以及各种行业的I/O标准化,必然会导致网络工厂的实现成为现实。在工厂里,每台设备都带有标准的网络接口,可以随时随地接入网络,而每台设备都处于网络的不同层次中,各个操作控制点可根据不同组态时分配给它的功能发挥不同的作用。

网络控制系统的特点

(1)对大、中、小控制任务都具有适应性; (2)与现存系统有可连接性; (3)保证系统有长期的使用价值。

3.7.3 网络控制系统PLC的影响

PLC网络控制系统的发展,使PLC的应用更加广泛。许多PLC产品都在PLC上加上了具有网络功能的硬件和软件,因此,组成PLC网络非常方便。PLC网络系统对任何一个站的操作都和使用同PLC一样方便,并且在网络中任何一个站都可以对其他站的元件及数据乃至程序进行操作。

27

P L C恒压供水控制系统设计

3.7.4 网络控制系统的设计

在辅助继电器(位)、数据继电器(字)专门开辟一个地址范围,将其分配个各台PLC,使得台PLC可以写其中一些元件而其他所有的站都可以读这些元件,然后再由这些元件去驱动其本身的软件,以达到通讯的目的。各站主机之间元件状态信息的交换是由PLC系统自己去完成的,不需要用户管理,这是现在比较通用的设计思想。由于各个PLC厂家各自开发自己的网络通讯系统,采用自己的通行协议和接口,设备的不兼容想限制的PLC的进一步发展,为此美国通用汽车公司编制了一个工厂自动化协议(MAP)。希望各个厂家生产的设备能用一种同意的语言标准进行通讯。MAP的体系结构是以估计标准化组织(ISO)推荐的开发系统互连(OSI)参考模型为基础,对参考模型的每一层都列出了合适于工业应用的特定标准。

3.7.5 访问控制技术

最常用的访问控制技术有:查询、冲突检测和令牌传递。一般查询和令牌传递没有冲突检测的速率高,但是可靠性好,最大延迟时间可以控制,控制网络经常采用这种控制技术;冲突检测通讯效率较高,速度较快,但各个站点通讯机会不均,在商务网络中使用较多。

28

P L C恒压供水控制系统设计

4 .系统硬件设计

学习PLC的硬件系统、指令系统和编程方法以后,对于设计一个较大的PLC控制系统时,要全面考虑多种因素,不管所设计的控制系统的大小,一般都要用以下设计步骤来进行系统设计。

随着PLC功能的不断完善和提高,PLC几乎可以完成工业领域的所以控制任务。但是PLC还是有最适合它的应用场合,所以接到一个控制任务以后,要分析被控对象的控制过程和要求,看看用什么控制设备来完成该任务最合适。其实现在的可编程不仅处理开关量,而且对模拟量的处理能力也很强。所以在很多情况下也可以取代工业控制计算机(IPC)作为主控器

控制对象以及控制装置确定后,还要进一步确定PLC的控制范围。一般来说,能够反映生产过程的运行情况,能用传感器直接测量的参数,控制逻辑复杂的部分都由PLC控制来完成。

当某一个控制任务决定由PLC来完成后。选择PLC就成为最重要的事情。一方面是选择多大容量的PLC,另一方面是选择什么公司的PLC以及外设。

对第一个问题,首先要对控制任务进行详细的分析,把所有的I/O点找出来,包括开关量I/O模拟量I/O以及这些I/O点的性质。I/O点是性质主要是指他们是直流信号还是交流信号,它们的电源电压。控制系统输出点的类型非常关键,如果它们之中既有交流220V的接触器、电磁阀,又有直流24V的指示灯,则最后选用的PLC的输出点有可能大于实际点数。因为PLC的输出点一般是几个一组共用一个公共端,这一组的输出只能有一个电源的种类和等级。 对于第二个问题,则有以下几个方面要考虑:

1)功能方面 所有PLC一般都具有常规的功能,但是对于某些特殊要求,就要知道所选用的PLC是否有能力完成控制任务。如对PLC与PLC、PLC与智能仪表以及上位机之间灵活方便的通讯要求;或对PLC的计算速度、用户程序容量有特殊要求的;或对PLC的位置控制有特殊要求等。这就要求用户对市场上流行的PLC品种有一个详细的了解,以便做出正确的选择。

2)价格方面 不同厂家的PLC产品价格相差很大,有些功能类似、质量相当、I/O点数相当的PLC的价格能相差40%以上。在使用PLC较多的情况下,这样的

29

P L C恒压供水控制系统设计

差价必须是需要考虑的。

3)个人喜好方面 有些工程技术人员对某种品牌的PLC熟悉,所以一般比较喜欢使用这种产品。

分析评估控制任务PLC机选型,I/O设备选择I/O地址分配程序设计电气系统安装检查修改程序调试程序设计硬件系统接线图和控制柜N满足要求检查硬件接线Y连机调试N满足要求NY编制技术文件现场安装调试交付使用 图8 PLC控制系统设计步骤

输入/输出信号在PLC接线端子上的地址分配是进行PLC控制系统设计的基础。对软件设计来说,I/O地址分配以后才可以进行编程;对控制柜和PLC的外围接线来说,只有I/O地址确定以后,才可以绘制电气接线图、装配图,让装配人员根据线路图和安装图安装控制柜。

30

P L C恒压供水控制系统设计

系统调试分模拟调试和联机调试

硬件部分的模拟调试可在断开主电路的情况下,主要试一试手动控制部分是否正确。

软件部分的模拟调试可借助于模拟开关和PLC输出端的输出指示灯进行。需要模拟量信号I/O时,可用电位器和万用表配合进行。调试时。可利用上诉外围设备模拟各种现场开关和传感器状态,然后观察PLC的输出逻辑是否正确。如果有错误则修改后反复调试。现在PLC的主流产品都可以在P机上编程,并可以在电脑上直接进行模拟调试。

联机调试时,可以把编制好的程序下载到现场的PLC中。有时PLC也许只有这一台,这时就要把PLC安装到控制柜相应的位置上。调试时一定要先将主电路断电,只对控制电路进行联调即可。通过现场联调信号的接入常常还会发现软件以及硬件中的一些问题,有时厂家还需要对某些控制功能进行改进,这种情况下,都要经过反复测试系统后,才能最后交付使用。

产生水压的设备是水泵,水泵转动的越快,产生的水压就越高。传统的维持水压的方法就是建造水塔,水泵开者时将水打到水塔中,水泵休息时借助水塔的水位继续供水。水塔中的水位变化相对水塔的高度来说很小,也就是说水塔能够维持供水管路中水呀的基本恒定。

但是建造水塔需花费财力,水塔还会造成水的二次污染。不用水塔,而要解决水压随用水量大小变化的问题。通常的办法是:用水量大时,增加水泵的数量或提高水泵的转动速度以保证管网中的水压不变,用水量小时又需作出相反的调节。这就是恒压供水的基本思路。这在电动机速度调节技术不发达的年代是不可设想的,但是今天办到这一点已经变的很容易了,交流变频的诞生为水泵转速的平滑连续调节提供了方便。交流变频器是改变交流电源频率的电子设备,输入三相工频交流电后,可以输出频率平滑变化的三相交流电。

建造水塔需要花费财力,水塔还会造成水的二次污染。那么可不可以不借助水塔来实现恒压供水?答案是肯定的,但是要解决水压随用水量的大小变化的问题。通常的办法是:用水量大时,增加水泵的数量或提高水泵的转动速度以保持管网中水压的不变,用水量小时又需要做出相反的调节。这就是恒压供水的基本思路,这在电动机速度调节技术不发达的年代是不可以想象的,但是在今天办到

31

P L C恒压供水控制系统设计

这一切已经边的很容易了。

4.1 系统控制要求

对恒压供水系统的基本要求是: (1)生活供水时,系统应低恒压值运行;

(2)两台泵是一主一备,采用“轮流循环开机”的原则; (3)在用水量小的情况下,就用一台休眠小泵来运行。 (4)要具有一台主泵不够用的情况下开启另一台泵有工频运行; (5)要有完整的报警功能;

(6)对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。

4.2 系统选型

S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。 ---- S7-200系列出色表现在以下几个方面: --------* 极高的可靠性 --------* 极丰富的指令集 --------* 易于掌握 --------* 便捷的操作 --------* 丰富的内置集成功能 --------* 实时特性 --------* 强劲的通讯能力 --------* 丰富的扩展模块

----S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制,运动系统。

32

P L C恒压供水控制系统设计

---- S7-200系列PLC可提供4个不同的基本型号的8种CPU供您使用。

CPU单元设计

集成的24V负载电源:可直接连接到传感器和变送器(执行器),CPU 221,222具有180mA输出, CPU 224,CPU 224XP,CPU 226分别输出280,400mA。可用作负载电源。

不同的设备类型

CPU 221~226各有2种类型CPU,具有不同的电源电压和控制电压。 本机数字量输入/输出点 CPU 226

可方便地用数字量和模拟量扩展模块进行扩展。可使用仿真器(选件)对本机输入信号进行仿真,用于调试用户程序。 模拟电位器 CPU226还具有 脉冲输出

2路高频率脉冲输出(最大20KHz),用于控制步进电机或伺服电机实现定位任务。 实时时钟

例如为信息加注时间标记,记录机器运行时间或对过程进行时间控制。 EEPROM存储器模块(选件)

可作为修改与拷贝程序的快速工具(无需编程器),并可进行辅助软件归档工作。 电池模块

用于长时间数据后备。用户数据(如标志位状态,数据块,定时器,计数器)可通过内部的超级电容存贮大约5天。选用电池模块能延长存贮时间到200天(10年寿命)。电池模块插在存储器模块的卡槽中。 编程:CPU 226

STEP 7-Micro/WIN32 V3.1编程软件可以对所有的CPU 226功能进行编程。同时也可以使用STEP 7-Micro/WIN16 V2.1软件包,但是它只支持对S7-21x同样具

33

P L C恒压供水控制系统设计

有的功能进行编程。

STEP 7-Micro/DOS不能对CPU 226编程。如果使用PG/PC的串口编程,则需要使用PC/PPI电缆。 CPU 226

本机集成24输入/16输出共40个数字量I/O 点。可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。用于较高要求的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功能。可完全适应于一些复杂的中小型控制系统。

4.3 PLC模拟量控制单元的配置以及应用

PLC的普通输入输出端口均为开关量处理端口,了使PLC能完成模拟量的处理,常见的方法是为整体式PLC加配模拟量扩展单元。模拟量扩展单元可将外部模拟量转化为PLC可处理的数字量及将PLC内部运算结果数字量转换为机外可以使用的模拟量。模拟量扩展单元有单独用于模/数转换的,单独用于数/转换的,也兼有模/数和数/模两种功能的,以下介绍S7-200系列PLC的模拟量扩展模块EM235,它具有四路模拟量输入及一路模拟量输入,可以用于恒压供水控制中。

4.3.1 EM235模拟量工作单元性能指标

34

P L C恒压供水控制系统设计

表2 模拟量扩展模块EM235输入/输出技术规范

输 入 技 术 规 范 最大输出电压 30VDC 输 出 技 术 规 范 隔离(现场到逻辑) 最大输入电压 输入滤波衰减 分辨率 隔离 输入类型 输入范围 电压单极性 32mA -3dB,3.1kHz 12位A/D转换器 否 差分 0~10V,0~5V 0~1V,0~500mV 电压双极性 电流 输入分辨率 AD转换时间 模拟输入阶跃响应 共模抑制 共莫电压 0~100Mv,0~50mV ±10V,±5V,±2.5V ±1V,±500mV,±250Mv ±100mV, ±50mV, ±25mv 0~20mA <250?s 1.5 mS到95% 4dB,DC 到60Hz 信号电压加共加模电压≤±12V 24VDC电压范围 数据字格式 双极性,满量程 单极性,满量程 20.4~~28.8V -32000~+32000 0~32000 信号范围 电压输出 电流输出 分辨率,满量程 电压 电流 电压 电流 精度 ±10 0~~20 mA ` 12位 11位 -32000~+32000 0~+32000 无 最差情况0~55℃ 电压输出 电流输出 精度 ±2%满量程 ±2%满量程 最差情况0~55℃ 电压输出 电流输出 典型,25℃ 电压输出 电流输出 设置时间 电压输出 电流输出 100?s 2ms ±2%满量程 ±2%满量程 ±5%满量程 ±5%满量程 为能适用各种规格的输入、输出量,模拟量处理模块都设计成可编程,而

35

P L C恒压供水控制系统设计

转换生成的数字量一般具有固定的长度及格式。模拟量输出则希望将一定范围的数字量转换为标准电流量或标准电压量以方便与其他控制接口。上表中,输入、输出信号范围栏给出了EM235的输出、输入信号规格,以供选用。

4.3.2 校准及配置

模拟量模块在接入电路工作前需完成配置及校准,配置指根据实际需接入的信号类型对模块进行一些设定。校准可以简单的理解为仪器仪表使用前的调零以及调满度。

4.3.3 EM235的安装使用

(1)根据输入信号的类型及变化范围设置DIP开关,完成模块的配置工作。

必要时进行校准工作。

(2)完成硬件的接线工作。注意输入、输出信号的类型不同,采用不同的接入方式。为防止空置端对接线端的干扰,空置端应短接。接线还应注意传感器的线路尽可能短,且应使用屏蔽双绞线,要保证24VDC传感器电源无噪声、稳定可靠。

(3)确定模块安装入系统时的位置,并由安装位置确定模块的编号。S7-200扩展单元安装时在主机的右边依次排列,并从模块0开始编号。模块安装完毕后,将模块自带的接线排插入主机上的扩展总线插口。

(4)为了在主机中进行输入模拟量转换后数字处理及为了输出需要在模拟量单元中转换为模拟量的数字量,要在主机中安排一定的存储单元。一般使用模拟量输入AIW及模拟量输出AQW单元安排由模拟量模块送来的数字量及待入模块转变为模拟量输出的数字量。而在主机的变量存储区V区存放处理产生的的中间数据。

4.3.4 EM235工作程序编制

EM235的工作程序编制包括以下的内容:

(1)设置初始化主程序。在该子程序中完成采样次数饿预置顶及采样和单元清

36

P L C恒压供水控制系统设计

零的工作,为开始工作做好准备。

(2)设置模块检测子程序。该子程序检查模块的连接的正确性以及模块工作的正确性。

(3)设置子程序完成采样以及相关的计算工作。 (4)工程所需的有关该模拟量的处理程序。 (5)处理后模拟量的输出工作。

S7-200PLC硬件系统的配置方式采用整体式和积木式,即主机包含一定数量的输入/输出(I/O)点,同时还可以扩展I/O模块和各种功能的模块。 一个完整的系统组成如图

编程工具CUP主机扩展模块功能模块人机界面通讯设备

图12 S7-200 PLC 系统组成

(1)基本单元 基本单元(Basic Unit)有时又称CUP模块,也有的称之为主机或本机。它包括CUP、存储器、基本输入/输出点和电源等,是PLC的主要部分。实际上它就是一个完整的控制系统,可以单独完成一定的控制任务。

(2)扩展单元 主机I/O点数量不能满足控制系统的要求时,用户可以根据需要扩展各种I/O模块,所能连接的扩展单元的数量和实际所能使用的 I/O点数时由多种因素共同决定的。 (3)特殊功能模块 当需要完成某些特殊功能的控制任务,需要扩展功能模块。它们是完成某些特殊控制任务的一些设置。 (4)相关设备 相关设备是为了充分和方便地利用系统的硬件和软件资源而开发和使用的一些设备,主要有编程设备、人机操作界面和网络设备等。

(5)工业软件 工业软件是为了更好地管理和使用这些设备而开发的与之相配套的程序,它主要由标准工具、工程工具、运行软件和人机借口软件等几大类构成。

EM235安装使用

(1)根据输入信号的类型以及范围设置DIP开关,完成模块的控制工作。 (2)完成硬件的接线工作。

(3)确定模块安装入系统时的位置,并由按装位置确定模块的编号。 (4)为了主机中进行输入模拟量转换后数字量以及待送入模块转变为模拟

37

P L C恒压供水控制系统设计

量输出的数字量。

S7-200 PLC的电源电压有(20.4~~28.8)VDC和(85~~264)VAC两种,主机上还集成了24V直流电源,可以直接用与连接传感器和执行机构。它的输出类型有晶体管(DC)、继电器(DC/AC)两种输出方式。它可以用普通输入端子扑捉比CUP扫描周期更快的脉冲信号,实现高速记数。2路最大可达20kHz的高频脉冲输出,可用以驱动步进电机和伺服电机以便实现准确定位任务。可以用模块上的电位器来改变它对应的特素积存器的数值可以实现更改程序应用中的一些参数,如定时器/计数器的设定值过程量的控制参数等。

38

P L C恒压供水控制系统设计

5.水泵电机的选择

5.1.概述

(1)SBG申宝自动给水设备是一个智能调节水泵水流量的自动供水设备,以PLC为核心的SBG恒压自动供水设备和SBG型普通继电器自动控制供水设备代表了当今自动供水领域的最新控制技术,已成为现今高楼给水的主导产品,可以完全取代传统的水塔、高位水箱和气压罐供水方式,既降低了建筑成本,又消除了水质的二次污染,而且更具节约能源,操作方便,自动化程度高,高可靠性等优点,是一种提高供水品质的理想产品。

(2)SBG自动给水设备主要由泵组、气压贮能器、稳压小泵及控制组成。泵组提供生产、生活所需要的用小量,气压贮能器(M系列除外)、稳压泵提供水及维持正常的管网渗漏,同时起稳定系统压力的作用。控制柜实现给水设备的全自动控制。

(3)工作过程为,按照供水压力,设定系统供水压力下限,供水压力上限,当采用普通继电器控制时,是以压力开关或电接点压力表采集控制信号,当系统压力下降到设定压力下限时,水泵起动;当压力上升到设定压力上限时,水泵停机。既可节能,又可恒压供水。提高了电机、水泵、阀门及电控柜的使用寿命,噪声大大降低。

39

本文来源:https://www.bwwdw.com/article/vq9.html

Top