03第三章 极限与函数的连续性

更新时间:2024-04-21 20:10:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第三章 极限与函数的连续性

§1 极限问题的提出

§2 数列的极限

1. 用定义证明下列数列的极限为零: (1) ?lim?(2) ?lim?n?1?;

n???n2???1??sin?n??;

n???n?(3) ?lim?n????n??;

?n???(?1)n(4) ?lim?2?;

n??n?????(5) ?lim?(n???1???n?)?;

n??10n(6) ?lim??;

n???n!?(7) ?lim?n????a???1??; n???an?n!?; n???nn?(8) ?lim?1???2??3???????n(9) ?lim??;

n???n2?(10) ?lim??n??1???a?n????a??1?. ?n?2.用定义证明: 3n2?n?(1) ?lim?2????;

n???2n???1???n2???n??????; (2) ?lim?n???n???n???1??,??????n?为偶数,??n(3) ?lim?xn?????,其中 ?xn?????

n???n???1???,??????n?为奇数;??n???????????????????????????????n???3k,???n???1???,??????????n????k??1??(k???1,?2,??)?,? (4) ?lim?xn?????,其中 ?xn???????????n??n??????n???2????,??????n????k???2.?3???n???n?3.用定义证明:

(1) 若?lim?an???a?,则对任一正整数?k?,有?lim?an?k???a?;

n??n??(2) 若?lim?an???a?,则?lim??an?????a|?.反之是否成立?

n??n??(3) 若?lim?an???a?,且?a???b?,则存在?N?,当?n???N?时,有?an???b?;

n??(4) 若?lim?an???a?,且?an???0?,则?lim?an???a?.

n??n?? 4.极限的定义改成下面形式是否可以?(其中“???”是逻辑符号,表示“存在”.)

|xn?-?a??|

n???lim?xn???a?,?lim?yn???a?.

n??n?? 7.利用极限的四则运算法则求极限: 3n3???2n2???n???1 (1) ?lim??; 32n???n???3n?2(?2)n???3n?; (2) ?lim?n??(?2)n?1???3n?11?1??????????n??; (3) ?lim?2n??1?1??????????n44 (4) ?lim?(n?1????n??????????n????)?.

n??8.求下列极限: (1) ?lim?(n??111??????????)?; 1???2?????n(n???1)111??????????)?; n2(n???1)2(2n)2 (2) ?lim?(n?? (3) ?lim?(n??1n??12???1n??22???????1n??n2)?;

132n?1 (4) ?lim?(???2???????n)?;

n??222 (5) ?lim?(1???nn??1?2?)?cos?n;

(6) ?lim????????;

n???n(7) ?lim?????????????????????????;

n??n (8) ?lim[(?n???1)n???nn]?,?0???a???1;

n?????n?? (9) ?lim?????????????;

n????2n (10) ?lim?nn??1?????????????????n?1??;

2??????????????n? (11) ?lim?nn???; ?n!?1 (12) ?lim?n?n?lnn??.

n?? 9.证明:若???an??,??bn???中一个是收敛数列,另一个是发散数列,则???an???bn??是发散数列;又问???anbn??和???n????(?bn???0)?是否也是发散数列?为什么? 10.设?xn???(?1)n?,证明???xn??发散. 11.若?a1,?a2,???,?am?为?m?个正数,证明:

n??nnlim?n?a1n???a2?????am???max(a1,?a2,???,?am).

?a??bn? 12.设?lim?an???a?,证明:

n??[n?a] (1) ?lim?n???a?;

n??n (2) 若?a???0,?an???0?,则?lim?n?an???1?.

n?? 13.利用单调有界原理,证明?lim?xn?存在,并求出它:

n?? (1) ?x1????2??,??x2????2xn?1??,???n???2,?????; (2) ?x1????c?????,??xn????c???xn?1??,???n???2,?????; cn (3) ?xn??????(c>0)??;

n!x,xn???1???n?1?,???n???1,?????. (4) ?x0??????1???xn?1 14.若?x1???a????,??y1???b???0?(a???b)?,

?xn?1????xnyn??,??yn?1???xn???yn?,? 2证明:?lim?xn????lim?yn?.

n??n?? 15.证明:若?an???0?,且?lim?n??an???l???1,?lim?an????.

n??an?1 16.设?lim?an???a,证明:

n?? (1) ?lim?a1???a2???????an(又问,它的逆命题成立否?) ??a?;

n??nn?? (2) 若?an???0,则?lim?n?a1?a2???an????a?. 17.应用上题的结果证明下列各题:

?1?1???????????n?????; (1) ?lim??3n??n (2) ?lim?n?a?????1??(a???0);

n??(3) ?lim?n?n?????1?;

n??(4) ?lim?nn??????0;

?n!?11?????????????????nn??????; (5) ?lim?n??n(6) 若?lim?bn?1???a??(bn???),则?lim?n?bn???a?. n??bn??n18.用定义证明下列数列为无穷大量: (1) ???n?; !??; (2) ???n??? (3) ???ln?n??; ?1? (4) ?1????????????.

?3n 19.证明:若???xn??为无穷大量,???yn??为有界变量,则???xn???yn?为无穷大量. 20.(1) 两个无穷大量的和的极限如何?试讨论各种可能性?

(2)讨论无穷大量和无穷小量的和、差、商的极限的情形; (3)讨论无穷大量和无穷小量的乘积可能发生的各种情形.

1?? 21.利用?lim??1???????e?,求下列极限:

n??n???1? (1) ?lim??1?????;

n???n?1?? (2) ?lim??1?????; n??n?1??nnn1?? (3) ?lim??1?????;

n??2n??1?? (4) ?lim??1???2??.

n??n??nn

§3 函数的极限

1.用极限定义证明下列极限: (1) ?lim?(2) ?lim?x?3x???31???;

x??1x2???92x???31???; x2???96(3) ?lim?x?1x???1???2; ?x????1(4) ?lim?x?1(x?2)(x?1)???0;

x???3(5) ?lim?x2?5???3;

x?2(6) ?lim?x?1x(x?1)1???; x2???12x????; 2x???9x???1???1; x???2(7) ?lim?x?3(8) ?lim?x??x2???x(9) ?lim??????;

x??x???1x2???5(10) ?lim?2???1.

x??x???12.用极限的四则运算法则求下列极限: x2???1(1) ?lim?2??;

x?02x???x???1x2???1(2) ?lim?2??;

x?12x???x???1(x???1)3???(1???3x)(3) ?lim???;

x?0x2???2x3(4) ?lim?x?1x2????x??x??;

(5) ?lim?x?31?x??2??; x???3x2???5x???6(6) ?lim?2?;

x?3x????x?????xn???1(7) ?lim?m?(?n?,?m?为正整数);

x?1x???1

(8) ?lim?x?41?2x???3?x????2?.

3.设?f(x)???0?,证明:若?lim?f(x)???A?,则?lim?nf(x)???nA?,其中正整数?n????.

x?x0x?x04.证明:若?lim?f(x)???A?,则?lim?|f(x)|???|A|,但反之不真.

x?x0x?x05.求下列函数字所示点的左右极限:

???????????????????x???1,?(1) f(x)???????????????????????x???1,? 在?x?=1??;

???x2???2?,???????x???1,?(2) f(x)??????x?sin?1x??????????x????,? ?????x2????????????x????,(3) f(x)???|x|1x1?x2?,? (4) f(x)???1x???[1x],? ???????x??????????x????,(5) f(x)???????????????????????x???0,? ?????x2?,???????x???0,6.求下列极限: (1) ?lim?x2???12???x???1??;

x??2x(2) ?5x???7xlim????2x????x???;

(3) ?xlim????(x2???1??x????;

(4) ?xlim????(x2???1??x????;

(5) ?limx2??x???3xx2??;

(6) ?x?sin?xxlim????x2???4??; (7) ?x??cos?xxlim????x??; (8) ?xlim?x????x????x?????x?1??.

7.用变量替换求下列极限: (1) ?xlim1?0??x[x]?;

(2) ?xlim?0??xa?ln?x???(a???0); 在?x?=?0?;在?x?=?0?;在?x?=?1n?,在?x?=???.

n?是正整数;

? (3) ?lim?ln?x?????a???0???;

x???xa1xx???(4) ?lim?x?.

8.设?f(x)?在?(?a,???)?上单调上升,?lim?xn?????,若?m求证:?lim?f(x)???A? il(?f)xn???A,

n??n??x???(?A?可以为无穷).

9.设?f(x)?在集合?X?上定义,则?f(x)?在?X?上无界的充要条件是:存在?xn???X?,

?n???1,?2,??,使?lim??f(x)|??????.

n??10.利用重要极限求极限: (1) ?lim?sin?2x??;

x?0xsin?x2??; (2) ?lim?x?0(sin?x)2(3) ?lim?x?0tan?3x??; sin?5x2sin?x???sin??x??;

x3(4) ?lim?x?0(5) ?lim?(6) ?lim?x?0cos?5x???cos?3x??;

x?0x2tan?x???sin?x??; x3(7) ?lim?(8) ?lim?x?0arctan?x??;

x?0x??;

?x???1???1sin?4x?1??cos?x2??; (9) ?lim?x?01???cos?x(10) ?lim?cos(n?arccos?x)??????n?为奇数?;

x?0xtan?x???1??; ?x???4?(11) ?lim?x?4(12) ?lim?x??sin?mx; ????(m,?n?为整数)sin?nxcos?xx????(13) ?lim?x?2?2??;

1(14) ?lim?x?sin???;

x???x(15) ?lim?[cos??n???????cos??n?]?;

x???(16) ?lim?sin?(???n2???1)????n?为整数?;

x??????(17) ?lim???-???;

x???x????x(18) ?lim?(1?nx)?????n?为整数?;

x?01x(19) ?lim?(1?tan?x)cot?x?;

x?01?x?1(20) ?lim?()x??;

x?01?x(21) ?lim?(x???3x?22x?1)?; 3x?1(22) ?lim?(sin?x)tan?x?;

?x?2?x2???1?(23) ?lim??2??;

x??x???1???n?x???. (24) ?lim??x???n?1??nx2111.证明limcos不存在 .

x?0x12.证明?lim?D?(x)?不存在,其中

x?x0???????x?为有理数,??1,D?(x)????

???,??????x?为无理数.?13.求极限

xxx?lim?cos??cos????cosn?. n???24214.用定义证明:

(1) 若?lim?f(x)??????,?lim?g(x)???A?,则?lim??f(x)?g(x)]??????;

x?ax?ax?a(2) 若?lim?f(x)??????,?lim?g(x)???A???????,则?lim??f(x)g(x)]??????.

x?ax?ax?a15.若?lim?f(x)???A??,?lim?g(x)???B??,证明:?lim??f(x)g(x)]???AB?.

x???x???x???16.证明?lim?f(x)???A??的充要条件是:对任何数列?xn??????(n??)?,有

x????f(xn????A?(n??)??.

17.证明?lim?f(x)???????的充要条件是:对任何数列?xn???x0?(n??)?,有 ?x?x0?f(xn????A?(n??)??.

18.设函数?f(x)?在?(0,???)?上满足方程?f(2x)???f(x)?,且?lim?f(x)???A,证明:

x????f(x)???A?,??x????(0,???)?.

§4 函数的连续性

1. 用定义证明下列函数在定义域内连续: (1) y????x?; 1; ?x?(3) y???|x|;

(2) y???1(4) y???sin?.

x2.指出下列函数的间断点并说明其类型: (1) f(x)???x???(2) f(x)???1; ?x?x; (1?x)21(3) f(x)???cos2?;

x(4) f(x)???[x]???[?x];

(5) f(x)???sinx; |x|(6) f(x)???sgn??x|; (7) f(x)???sgn(cos?x); ?; ln?x???x??,????????|x|???1,? (9) f(x)??????1???,?????????x|?1;?(8) f(x)?????x????cos??,????????|x|???1,(10) f(x)????? 2?????x??1????,?????????x|?1;(11) f(x)???????sin??x??,????????x?为有理数,?

??????0?????,????????x?为无理数;???????x??,????????x?为有理数,?

???x??,????????x?为无理数.?(12) f(x)????3.当?x???0?时下列函数无定义,试定义?f(0)?的值,使?f(x)?在?x???0?连续: (1) ?f(x)???3(2) ?f(x)????????x???1?1??x???1;

tan?2x; x1(3) ?f(x)???sinx?sin;

x(4) ?f(x)??????x?.

4.设?f(x)?是连续函数,证明对任何?c???0?,函数

?????c,???????f(x)?????c,??g(x)?????f(x),??????f(x)????c,

??????c,?????????f(x)???c??x是连续的.

5.若?f(x)?在?x0?点连续,那么??f(x)???和?f2(x)?是否也在?x0?点连续?反之如何? 6.若函数?f(x)?字?x???0?点连续,而?g(x)?在?x???0?点不连续,问此二函数的和、积在?x0?点是否连续?又若?f(x)?和?g(x)?在?x0?点都不连续,问此二函数的和、积在?x0?点是否必不连续?

7.证明若连续函数在有理点的函数值为0,则此函数恒为0. 8.若?f(x)?在?[a,?b]?连续,恒正,按定义证明?

1

?在??a,?b??连续. f(x)

9.若?f(x)?和?g(x)?都在?[a,?b]?连续,试证明?max(f(x)???g(x))?和?min(f(x)???g(x))?都在?[a,?b]?连续.

10.证明:设?f(x)?为区间?(a,?b)?上单调函数,若?x0????a,?b??为?f(x)?的间断点,则必是?f(x)?的第一类间断点.

11.若?f(x)?在?[a,?b]?,?a???x1???x2???????xn???b?,则在?[x1,?x2]?中必有???,使得 ??f(?)???[f(x1)???f(x2)???f(xn)]?.

n 12.研究复合函数?f??g?和?g??f?的连续性. 设

(1) ?f(x)???sgn?x,??g(x)???1?x2; (2) ?f(x)???sgn?x,??g(x)????1?x2)x.

13.证明:若?f(x)?在?[a,?b]?连续,且不存在?x????a,?b]?,使?f(x)?????,则?f(x)?在?[a,?b]?恒正或恒负.

14.设?f(x)?为?[a,?b]?上的递增函数,值域为?[f(a),?f(b)]?,证明?f(x)?在?[a,?b]?上连续. 15.设?f(x)?在?[a,???)?上连续,且?0????f(x)???x??(?x???0),若?a1?0??,??an?1???f(an)??(n???1,?2,??).求证:

(1) lim?an?存在;

n??(2) 设lim?an???l?,则?f(l)???l?;

n??(3) 如果将条件改为?0????f(x)???x??(?x???0),则?l???0?. 16.求下列极限: ?1?x?(1) lim???x?12?x??1??x?1?x;

1(2) lim??arctan?x?cos?;

x???x1(3) lim?(cos?x);

x?0x2excos?x??5?(4) lim?.

x?01???x2???ln(1?x)17.证明方程?x3???px???q???0???(p??0)?有且只有一个实根.

§5 无穷小量与无穷大量的比较

1. 当?x???0时,以?x?为标准求下列无穷小量的阶: (1) sin??x????sin?x; (2) (3)

1???(1???x); 1?x3?|x|????x2;

(4) 1???tan?x???1???sin?x; (5) ln?(1???x)?; (6)

5x2???4x3;

(7) n1???x????; (8) ex???1.

2.当?x?????时,以?x?为标准求下列无穷大量的阶: (1) x2???x6;

(2) 4x2????x4???x5; (3)

31x2?sin?;

x|x|; (4) 1???1?????x3?1(5) 2;

x?2x???31(6) x2?arctan?.

x3.当?x??0?时,下列等式成立吗? (1) ?o?(?x2?)???o?(?x?)?; (2) ?O?(?x2?)????(?x?)?;

?o?(?x2?)???o?(?x3?)?; (3) ?x??o?(?x2?)(4) ????o?(?x?)?;

xo?(?x2?)???o?(?x?)?; (5) ?o?(?x)(6) ?o?(?x?)???O?(?x2?). 4.试证下列各题:

(1) x?sin??x????O?(?x?)???(?x??0?); (2) 2x3???2x2???O?(?x3?)?????(x??); (3) o?(g(x))???o?(g(x))???o?(g(x))?????x?x0?; (4) o?(xm)???o?(xn)???o?(xn)?????x?0????m???n???0?; (5) o?(xm)?o?(xn)???o?(xm?n)?????x?0????m???n???0?. 5.证明下列各式:

(1) tan?x???x?????(?x???0?)?; (2) arcsin?x???x?????(?x???0?)?; (3) arctan?x???x?????(?x???0?)?; ?(4) 1???cos?x???x2?????(?x???0?)?;

?32(5) ex???????x?????(?x???0?)?;

(6) (1?x)a???????x?????(?x???0?),?其中???????. 6.运用等价无穷小量求极限:

?x; (1) lim?x??x???cos?x2?arctan?1???x2???1(2) lim?;

x?01???cos?x?(3) lim?x?0x?ln(1?x);

sin?x22ex???1(4) lim?.

x?0x?sin?x7.设?f(x)???g(x)??(x?x0)?,证明:

?f(x)???g(x)????o?(?f(x)?)?或?f(x)???g(x)????o?(?g(x)?)?.

8.设?x???a?时,f1(x)?与?f2(x)?维等价无穷小,g1(x)?与?g2(x)?是等价无穷大,且 ?lim?f2(x)g2(x)?存在,求证

x?a?lim?f1(x)g1(x)???lim?f2(x)g2(x)?.

x?ax?a

本文来源:https://www.bwwdw.com/article/glop.html

Top