九年级上册数学期末精选试卷达标训练题(Word版 含答案)

更新时间:2023-03-21 08:59:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

九年级上册数学期末精选试卷达标训练题(Word版含答案)

一、初三数学一元二次方程易错题压轴题(难)

1.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.

(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)

(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程

中,“大众点评”网上的购买价格比原有价格上涨5

2

m%,购买数量和原计划一样:“美团”网

上的购买价格比原有价格下降了9

20

m元,购买数量在原计划基础上增加15m%,最终,在

两个网站的实际消费总额比原计划的预算总额增加了15

2

m%,求出m的值.

【答案】(1)120;(2)20.

【解析】

试题分析:(1)本题介绍两种解法:

解法一:设标价为x元,列不等式为0.8x?80≤7680,解出即可;

解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;

(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”

网上的购买实际消费总额:120a(1﹣25%)(1+5

2

m%),在“美团”网上的购买实际消费

总额:a[120(1﹣25%)﹣9

20

m](1+15m%);根据“在两个网站的实际消费总额比原计划

的预算总额增加了15

2

m%”列方程解出即可.

试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x?80≤7680,x≤120;

解法二:7680÷80÷0.8=96÷0.8=120(元).

答:每个礼盒在花店的最高标价是120元;

(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:

120×0.8a(1﹣25%)(1+5

2

m%)+a[120×0.8(1﹣25%)﹣

9

20

m](1+15m%)=120×0.8a(

1﹣25%)×2(1+ 15

2

m%),即72a(1+

5

2

m%)+a(72﹣

9

20

m)(1+15m%)=144a(1+

15

2

m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.

点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际

消费总额是解题关键.

2.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.

(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;

(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012

年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的

汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.

【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20%

(2)从2011年初起每年新增汽车数量最多不超过20万辆

【解析】

【分析】

(1)设年平均增长率x,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.

(2)设从2011年初起每年新增汽车的数量y,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得.

【详解】

解:(1)设该市汽车拥有量的年平均增长率为x.

根据题意,得75(1+x)2=108,则1+x=±1.2

解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).

答:该市汽车拥有量的年平均增长率为20%.

(2)设全市每年新增汽车数量为y万辆,则2010年底全市的汽车拥有量为

(108×90%+y)万辆,2011年底全市的汽车拥有量为[(108×90%+y)×90%+y]万辆.

根据题意得(108×90%+y)×90%+y≤125.48,

解得y≤20.

答:该市每年新增汽车数量最多不能超过20万辆.

3.已知二次函数y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)

①求a的值;

②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;

【答案】①a的值是﹣2或﹣4;②最大值=13,最小值=9

【解析】

【分析】

①根据题意解一元二次方程即可得到a的值;

②根据a≤x≤b,b=﹣3求得a=-4,由此得到一次函数为y=﹣4x﹣3,根据函数的性质当x=﹣4时,函数取得最大值,x=﹣3时,函数取得最小值,分别计算即可.

【详解】

解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)

∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,

解得,a1=﹣2,a2=﹣4,

∴a的值是﹣2或﹣4;

②∵a≤x≤b,b=﹣3

∴a=﹣2舍去,

∴a=﹣4,

∴﹣4≤x≤﹣3,

∴一次函数y=﹣4x﹣3,

∵一次函数y=﹣4x﹣3为单调递减函数,

∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13

x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9.

【点睛】

此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a、b的关系得到函数解析式是解题的关键.

4.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.

(1)求证:对任意实数m,方程总有2个不相等的实数根;

(2)若方程的一个根是2,求m的值及方程的另一个根.

【答案】(1)证明见解析;(2)m的值为±2,方程的另一个根是5.

【解析】

【分析】

(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;

(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.

【详解】

(1)证明:

∵(x﹣3)(x﹣4)﹣m2=0,

∴x2﹣7x+12﹣m2=0,

∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,

∵m2≥0,

∴△>0,

∴对任意实数m,方程总有2个不相等的实数根;

(2)解:∵方程的一个根是2,

∴4﹣14+12﹣m2=0,解得m=±,

∴原方程为x2﹣7x+10=0,解得x=2或x=5,

即m的值为

±,方程的另一个根是5.

【点睛】

此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.

当△=b2-4ac>0时,方程有两个不相等的实数根;

当△=b2-4ac=0时,方程有两个相等的实数根;

当△=b2-4ac<0时,方程没有实数根.

5.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).

(1)请回答李晨的问题:若CD=10,则AD= ;

(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:

①∠FCD的最大度数为;

②当FC∥AB时,AD= ;

③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;

④△FCD的面积s的取值范围是 .

【答案】(1)2;(2)① 60°;②;③;④.

【解析】

试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.

(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.

②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.

③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.

④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.

∵CD=10,∴AD=2.

(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.

∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."

② 如图,过点F作FH ⊥AC于点H,

∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.

∵FC∥AB,∠A=45°

,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.

③如图,过点F作FH⊥AC于点H,设AD=x,

由②知DH=3,FH=,则HC=.

在Rt △CFH中,根据勾股定理,得

.

∵以线段AD 、FC 、BC的长度为三边长的三角形是直角三角形,且FC为斜边,

∴,即,解得.

④设AD=x,易知,即.

而,

当时,;当时,.

∴△FCD的面积s的取值范围是.

考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.

二、初三数学二次函数易错题压轴题(难)

6.对于函数y=ax2+(b+1)x+b﹣2(a≠0),若存在实数x0,使得a2

x+(b+1)x0+b﹣2=x0成立,则称x0为函数y=ax2+(b+1)x+b﹣2(a≠0)的不动点.

(1)当a=2,b=﹣2时,求y=ax2+(b+1)x+b﹣2(a≠0)的不动点;

(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;

(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+

2121a +是线段AB 的垂直平分线,求实数b 的取值范围.

【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b

的取值范围是﹣4

≤b <0. 【解析】

【分析】

(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;

(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+

2121a +是线段AB 的垂

直平分线,从而可以求得b 的取值范围.

【详解】

解:(1)当a =2,b =﹣2时,

函数y =2x 2﹣x ﹣4,

令x =2x 2﹣x ﹣4,

化简,得x 2﹣x ﹣2=0

解得,x 1=2,x 2=﹣1,

即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2;

(2)令x =ax 2+(b+1)x+b ﹣2,

整理,得

ax 2+bx+b ﹣2=0,

∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0,

故(﹣4a )2﹣4×1×8a <0,

解得,0<a <2,

即a 的取值范围是0<a <2;

(3)由题意可得,

点A 和点B 在直线y =x 上,

设点A (x 1,x 1),点B (x 2,x 2),

∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,

∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根,

∴x 1+x 2=﹣b a

, ∵线段AB 中点坐标为(

122x x +,122x x +), ∴该中点的坐标为(2b a -,2b a -), ∵直线y =﹣x+

2121a +是线段AB 的垂直平分线, ∴点(2b a -,2b a -)在直线y =﹣x+2121a +上, ∴2b a -=21221

b a a ++ ∴﹣b

=221a

a ≤+

4,(当a

=2

时取等号) ∴0<﹣b

≤b <0, 即b

的取值范围是﹣

4≤b <0. 【点睛】

本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.

7.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0).

(1)当y 0=﹣1时,求m 的值.

(2)求y 0的最大值.

(3)当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是 .

(4)点A 在图象G 上,且点A 的横坐标为2m ﹣2,点A 关于y 轴的对称点为点B ,当点A 不在坐标轴上时,以点A 、B 为顶点构造矩形ABCD ,使点C 、D 落在x 轴上,当图象G 在矩形ABCD 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.

【答案】(1

或﹣1;(2)14;(3)0<x 1<1;(4)m =0或m >43或23≤m <1 【解析】

【分析】

(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;

(2)分三种情形,利用二次函数的性质分别求解即可;

(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;

(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】

解:(1)如图1中,当m>0时,

∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,

图象G是抛物线在直线y=2m的左侧部分(包括点D),

此时最底点P(m,﹣m2+m),

由题意﹣m2+m=﹣1,

解得m=51

2

+

51

2

-+

(舍弃),

当m=0时,显然不符合题意,

当m<0时,如图2中,

图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,

∴m=﹣1,

综上所述,满足条件的m

的值为

51

2

或﹣1;

(2)由(1)可知,当m>0时,

y0=﹣m2+m=﹣(m﹣1

2

)2+

1

4

∵﹣1<0,

∴m=1

2

时,y0的最大值为

1

4

当m=0时,y0=0,当m<0时,y0<0,

综上所述,y0的最大值为1

4

(3)由(1)可知,当图象G与x轴有两个交点时,m>0,

当抛物线顶点在x轴上时,4m2﹣4m=0,

∴m=1或0(舍弃),

∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,

故答案为0<x1<1;

(4)当m<0时,观察图象可知,不存在点A满足条件,

当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,

当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,

观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)

时,满足条件.

则有(2m﹣2)2﹣2m(2m﹣2)+m<0,

解得m>

4

3

或﹣m≤2m﹣2<0,

解得

2

3

≤m<1(不合题意舍弃),

当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.

即或﹣m≤2m﹣2<0,

解得

2

3

≤m<1,

综上所述,满足条件m的值为m=0或m>

4

3

2

3

≤m<1.

【点睛】

本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.

8.如图①是一张矩形纸片,按以下步骤进行操作:

(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;

(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;

(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.

(探究)

(1)证明:OBC≌OED;

(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.

【答案】(1)见解析;(2)x=4,16

【解析】

【分析】

(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;

(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可.

【详解】

(1)证明:连接EF .

∵四边形ABCD 是矩形,

∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90°

由折叠得∠DEF =∠DAF ,AD =DE

∴∠DEF =90°

又∵∠ADE =∠DAF =90°,

∴四边形ADEF 是矩形

又∵AD =DE ,

∴四边形ADEF 是正方形

∴AD =EF =DE ,∠FDE =45°

∵AD =BC ,

∴BC =DE

由折叠得∠BCO =∠DCO =45°

∴∠BCO =∠DCO =∠FDE .

∴OC =OD .

在△OBC 与△OED 中,

BC DE BCO FDE OC OD =??∠=∠??=?

,,

, ∴△OBC ≌△OED (SAS );

(2)连接EF、BE.

∵四边形ABCD是矩形,

∴CD=AB=8.

由(1)知,BC=DE

∵BC=x,

∴DE=x

∴CE=8-x

由(1)知△OBC≌△OED

∴OB=OE,∠OED=∠OBC.

∵∠OED+∠OEC=180°,

∴∠OBC+∠OEC=180°.

在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,

∴∠BOE=90°.

在Rt△OBE中,OB2+OE2=BE2.

在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.

∵OB2=y,∴y+y=x2+(8-x)2.

∴y=x2-8x+32

16.

∴当x=4时,y有最小值是

本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.

9.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.

(1)求抛物线的解析式;

(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.

①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;

②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

【答案】(1)y=x2﹣2x﹣3;(2)①有,

9

4

;②存在,(2,﹣3)或(32,2﹣2)【解析】

【分析】

(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;

(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣

3

2

)2+

9

4

即可求解;

②分PM=PC、PM=MC两种情况,分别求解即可.

【详解】

解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,

故点B、C的坐标分别为(3,0)、(0,﹣3),

将点B、C的坐标代入抛物线表达式得:

930

3

b c

c

++=

?

?

=-

?

解得:

3

2

c

b

=-

?

?

=-

?

故抛物线的表达式为:y=x2﹣2x﹣3;

(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),

①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣

3

2

)2+

9

4

∵﹣1<0,故PM有最大值,当x=

3

2

时,PM最大值为:

9

4

②存在,理由:

PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;

PC2=x2+(x2﹣2x﹣3+3)2;

MC2=(x﹣3+3)2+x2;

(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,

解得:x=0或2(舍去

0),

故x=2,故点P(2,﹣3);

(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,

解得:x=0或3±2(舍去0和3+2),

故x=3﹣2,则x2﹣2x﹣3=2﹣42,

故点P(3﹣2,2﹣42).

综上,点P的坐标为:(2,﹣3)或(3﹣2,2﹣42).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.

10.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;

(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;

(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.

【答案】(1)A(-1,0) ,B(2,3)

(2)△ABP最大面积s=

1927

322

288

?=; P(

1

2

,﹣

3

4

(3)存在;

25

【解析】

【分析】

(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组21

1

y x

y x

?=

?

=+

?

即可;

(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利

用S△ABP=S△PFA+S△PFB,

,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.

【详解】

解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.

联立两个解析式,得:x2﹣1=x+1,

解得:x=﹣1或x=2,

当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,

∴A(﹣1,0),B(2,3).

(2)设P(x,x2﹣1).

如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).

∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.

S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF

∴S△ABP=(﹣x2+x+2)=﹣(x﹣

1

2

)2+

27

8

当x=

1

2

时,yP=x2﹣1=﹣

3

4

∴△ABP面积最大值为,此时点P坐标为(

1

2

,﹣

3

4

).

(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,

则E(﹣

1

k

,0),F(0,1),OE=

1

k

,OF=1.

在Rt△EOF中,由勾股定理得:

22

11

1=

k

k

+

??

+

?

??

令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.

∴C(﹣k,0),OC=k.

假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,

则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=

2k . ∴EN=OE ﹣ON=1k ﹣2

k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,

∴△EQN ∽△EOF , ∴NQ EN OF EF =,即:1221k k k k

-=, 解得:25, ∵k >0,

∴25. ∴存在唯一一点Q ,使得∠OQC=90°,此时25. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.

三、初三数学 旋转易错题压轴题(难)

11.(1)观察猜想

如图(1),在△ABC 中,∠BAC=90°,AB=AC,点D 是BC 的中点.以点D 为顶点作正方形DEFG ,使点A ,C 分别在DG 和DE 上,连接AE ,BG ,则线段BG 和AE 的数量关系是_____;

(2)拓展探究

将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.

(3)解决问题

若BC=DE=2,在(2)的旋转过程中,当AE 为最大值时,直接写出AF 的值.

【答案】(1)BG=AE.

(2)成立.

如图②,

连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.

∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.

∴△BDG≌△ADE,∴BG=AE.…………………………………………7分

(3)由(2)知,BG=AE,故当BG最大时,AE也最大.

③.

正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图

在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.

∴AF=

【解析】

解:(1)BG=AE.

(2)成立.

如图②,连接AD.

∵△ABC是等腰三直角角形,∠BAC

=90°,点D是BC的中点.

∴∠ADB=90°,且BD=AD.

∵∠BDG=∠ADB -∠ADG=90°-∠ADG=∠ADE,DG=DE.

∴△BDG≌△ADE,∴BG=AE.

(3)由(2)知,BG=AE ,故当BG最大时,AE也最大.Z+X+X+K]

因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.

若BC=DE=2,则AD=1,EF=2.

在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.

∴AF=.

即在正方形DEFG旋转过程中,当AE为最大值时,AF=.

12.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度135°.

数为45°或

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G

到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

13.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在

正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点

F

重合),如图1

所示:

(1)求证:EP2+GQ2=PQ2;

(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;

(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).

【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的

关系为PF2+GQ2=PE2+FQ2.

【解析】

【分析】

(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、

PH,由此可证

△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】

(1)过点E作EH∥FG,连接AH、FH,如图所示:

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,

∴△EAH≌△GAQ,

∴EH=QG,HA=AQ,

∵FA⊥AD,

∴PQ=PH.

在Rt△EPH中,

∵EP2+EH2=PH2,

∴EP2+GQ2=PQ2;

(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,

∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,

∴△EAH≌△GAQ,

∴EH=QG,HA=AQ,

∵PA⊥AD,

本文来源:https://www.bwwdw.com/article/678l.html

Top