Exchange interaction and stability diagram of coupled quantum dots in magnetic fields

更新时间:2023-08-09 18:44:01 阅读量: IT计算机 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

ExchangeinteractionandstabilitydiagramofcoupledquantumarXiv:cond-mat/0607571v1 [cond-mat.mes-hall] 22 Jul 2006dotsinmagnetic eldsL.-X.Zhang,D.V.Melnikov,andJ.-P.LeburtonBeckmanInstituteforAdvancedScience&TechnologyandDepartmentofElectricalandComputerEngineering,UniversityofIllinoisatUrbana-Champaign,Urbana,Illinois61801(Dated:February6,2008)AbstractThechargestabilitydiagramfortwocoupledquantumdotscontaininguptotwoelectronsiscomputedinmagnetic elds.One-andtwo-particleSchr¨odingerequationsaresolvedbyexactdiagonalizationtoobtainthechemicalpotentialsandexchangeenergyinthesesystems.Byan-alyzingthechemicalpotentialsvariationwithexternalbiasesandmagnetic elds,itispossibletodistinguishbetweentheweakandstronginter-dotcouplings.Thevariationofthechemicalpotentialcurvaturesandthedouble-triplepointseparationsinthestabilitydiagramscon rmstheinter-dotcouplingdecreasewithincreasingmagnetic elds.Thecomputedexchangeenergiesarealsofoundtobesigni cantlysmallerthanthevaluesestimatedfromthestabilitydiagram.PACSnumbers:,73.21.-b

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

Coupledquantumdots(QDs)areofparticularimportanceforspin-basedquantumcom-putationbecauseuniversalquantumlogicalgates(suchasaControl-NOTgate)canberealizedviatheinteractionbetweentwoquantumbits(qubits),i.e.,thespinsoftwoelec-trons,eachtrappedinonequantumdot.1Insuchdevices,theinteractionbetweenthetwospinsisproportionaltotheexchangeenergyJ,whichisequivalenttothesplittingbetweenthelowestsingletandtriplettwo-electronstates.

WhileextensivetheoreticalworkfocusesonthedependenceofJonthesystempara-menterssuchastheinter-dotseparation,thetunnelingbarrierbetweentheQDs,andtheexternalmagnetic eld,2,3,4,5thechargestabilitydiagramofcoupledQDs6hasbeenstudiedtoalesserextent.Meanwhile,recentadvancesinexperimentaltechniqueshavemadeitpossibletostudycoupledQDsinthefew-electronregimewheneachQDcontainsonlyoneconductionelectron(see,e.g.,Refs.[6,7,8]).Inthiscasethestabilitydiagrambecomesapowerfultooltostudyinter-dotcouplingandelectronictransportthroughdoubleQDsys-tems.Analysisofthestabilitydiagramanditsevolutioninmagnetic eldsallowsonetoestimatethevaluesoftheexchangeenergyaswasdemonstratedrecentlyinthecaseofthetwolaterallycoupledverticalQDs.8

Ingeneral,inthestabilitydiagramtheboundariesbetweendistinctstablechargestates,i.e.,betweenthestateswith xednumberofelectronsN1andN2ineachofthecoupleddots,arerepresentedasfunctionsofthetwocontrollinggatebiases,oneforeachdot.6TheseequilibriumchargesaredeterminedfromtheconditionthatthechemicalpotentialoftheQDstructureµ(N1+N2)de nedas:6

µ(N1+N2)=EG(N1+N2) EG(N1+N2 1),(1)

whereEG(N)isthegroundstateenergyoftheN-electronstate,islessthanthatoftheleads(sourceanddrain).

Inthispaper,wenumericallycomputethestabilitydiagramincoupledQDswithN1+N2≤2electronsinexternalmagnetic elds,andinvestigateitspropertiesfordi erentinter-dotcouplingstrengths.TheHamiltonianforthecoupledsystemisgivenby

H(r1,r2)=Horb+HZ,(2)

Horb=h(r1)+h(r2)+C(r1,r2)

(3)

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

1h(r)=2

cA)+V(r),(4)

C(r1,r2)=e2/ |r1 r2|(5)

HZ=gµB B·Si(6)

i

Here,m =0.067meistheelectrone ectivemass, =13.1isthedielectricconstant,g= 0.44istheg-factorinGaAs,µBistheBohrmagnetonandA=1

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

chemicalpotentialswithslightlylargerslopesthanshownwasfoundforvariousmagnetic eldsaswell.10

SWe rstanalyzethedependencesofthetotalenergiesEG(1)andEG(2)foroneandtwo

electronsonVLandVRshowninFig.2.Weseethatintheone-electroncase(leftcolumn),thecurvatureofEG(1)intheregionwhereVLandVRareneareachother(VL~VR)islargerford=60nmthanford=50nmbecauseoftheweakercouplingbetweentheQDsintheformercase.Wealsonotethatforbothvaluesoftheinter-dotdistance,thecurvaturesoftheenergycontourplotsincreasealongthemaindiagonalsincethecouplingbetweenthedotsdecreasesasVL=VRgetslarger.

However,whenthetwoelectronspopulatetheQDsystem,thesituationbecomesradicallydi erent:intheweakcouplingcase(d=60nm,bottomright),thetotalenergyofthetwoelectronsystemintheVL~VRregionisalmostlinearlydependentonVL(VR),i.e.,thecurvatureisvanishinglysmall,whileford=50nm(topright)theenergycurvesclearlyexhibitanon-linearbehaviorwithnon-zerocurvatures.Thelargeoverlapbetweentheelectronsinthestronginter-dotcouplingcase(d=50nm)isresponsibleforthesmoothnon-lineardependenceoftheenergyonVL(VR).However,intheweak-couplingcase(d=60nm),thetwoelectronsarewelllocalizedintheindividualQDsbyCoulombrepulsionandthelargebarrierbetweenthedots,sothatthepotentialchangeinoneQDcausedbythevariationofVL(VR)doesnota ecttheelectronchargedistributionbutonlyactsasaconstantadditiontothetotalenergy.ThisleadstoalineardependenceofthetotalenergyonVL(VR).12Whenthedi erencebetweenVLandVRbecomessu cientlylargetoovercometheCoulombrepulsion,thetwoelectronsmoveintooneQD.ThisisaccompaniedbyachangeintheslopeoftheenergycurveswhichbecomeeitherhorizontalorverticalasVL(orVR)nolongera ectsthetotalenergyandwhichcorrespondstothe(0,2)/(2,0)regionsonthestabilitydiagram(notshown).6Weemphasizethattheobservedquasi-linearbehaviorofthetotalenergyEG(2)whenVL~VRintheweakcouplingregime(d=60nm)isphysicallydi erentfromthesituationintwocoalesceddotswherebothEG(1)andEG(2)arealsostraightlinesperpendiculartothemaindiagonalintheVL VRplane.6ThisisbecauseinthatcaseonedealswithasingleQDandchangingVL(VR)modi esthetotalenergyofthesystem.

Fig.3displaysthecontourplotsofµ(1)(lowerbranches)andµS(2)(upperbranches)asfunctionsofVLandVRatzeromagnetic eld.Wechooseconstantvaluesofµ(1)=

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

µS(2)= 18meVford=50nmandµ(1)=µS(2)= 16.5meVford=60nmasthereferencevaluesofthechemicalpotentialinthesource/drainoftheQDdevice.11InFig.3wecanrecognizefourregionscorrespondingtofourstablechargestateswithdi erentnumbersofelectronsineachdot[thenumbersintheparenthesesineachregiongivethenumberofelectronsinthe(left,right)QD]separatedbythechemicalpotentialcontoursandthemaindiagonalVL=VR.Attheturningpointoneachbranchalongthemaindiagonal,threestablechargestatescoincideintermsofthetotalenergyofthesystem.Thedistancebetweentheturningpointsistheso-calleddouble-triplepoint(DTP)separation(alsocalledtheanti-crossingseparation).6,8FromFig.3wealsoobservethattheDTPseparation VL= VR=5.00meVinthed=50nmcaseissigni cantlylargerthanthecorrespondingvalue VL= VR=2.93meVinthed=60nmcase.Furthermore,thecurvatureofthebranchesaroundtheDTPissmallerford=50nmthanford=60nm.Accordingtothe“classical”theory,6asmallerDTPseparation(orequivalentlyalargercurvatureofthechemicalpotentialcontourlines)indicatesaweakerinter-dotcouplingwhichisconsistentwithour ndings.

FromthedatainTableI,wenotethatford=50nm,thecurvature(magnitude)κ(2)oftheµ(2)curveissmallerthanthecurvature(magnitude)κ(1)forµ(1),whileinthed=60nmcaseκ(1)<κ(2).Thispeculiarbehaviorcanbeclari edbynotingthatbothκ(1)andκ(2)aredeterminedbythedi erencesbetweenthecorrespondingcurvaturesofthetotalenergywhosebehaviorinthevoltageplaneisdiscussedabove.Thisindicatesthatingeneral,allbeingequal,intheweak-couplingregimethecurvatureofthechemicalpotentialfortwoelectronsislargerthanthatoneforoneelectron,κ(2)>κ(1),whileinthestrongcouplingregime,theoppositerelationshipκ(2)<κ(1)holds.

Inthepresenceofthemagnetic eld,thecurvaturesofthechemicalpotentialcontoursalsoincreaseascanbeseeninFig.4(a)and(b)whereweagainplotthechemicalpotentialcon-toursforµ(1),µS(2)andµT(2)atconstantreferencevaluesofµ(1)=µS(2)=µT(2)= 18( 16.5)meVford=50(60)nmatB=0,3and6T.NotetheorderofthecontoursforµS(2)andµT(2)atdi erentmagnetic elds.Asthemagnetic eldincreases,thecontoursshiftfromthelowerleftcornertotheupperrightcornerbecausethesingle-particleeigenen-ergiesincrease.4Inadditiontothecurvatureincrease,theDTPseparationbecomessmalleratlargermagnetic eldforbothsingletandthelowesttripletstates[forthedetailedexpla-nationofthise ect,seethediscussiononFig.5(a)].Fromthechangesinthecurvatureand

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

DTPseparation,oneconcludesthatthemagnetic eldindeedinducesaquantummechani-caldecouplingbetweenthetwodotsandresultsinmagneticlocalizationofelectronsineachdot.BycomparingthechemicalpotentialcurvesinFig.4(a)withthecorrespondingonesinFig.4(b),weseethatinthelattercasethechemicalpotentialcontourshavemuchlargercurvaturesthanintheformercase(seeTableIfordetails)duetotheincreasedinter-dotdecouplingandforeachvalueofthemagnetic eldtheDTPseparationford=60nmismorethan60%smallerthanford=50nm.

FromTableI,itisalsoshownthatthecurvaturesκ(1)andκ(2)progressivelyincreaseasthemagnetic eldbecomeslarger.Thisisduetoenhancedlocalizationofelectronscausedbythemagnetic eld.Themagneticlocalizationintheweakcouplingcasebecameprevalentatlower eldsthaninthestrongcouplingsituation[seelowerinsetsofFig.5],whichismanifestedbyamorerapidincreaseinthecurvatureofchemicalpotentialcontours.Figures5(a)and(b)showtheextractedDTPseparationalongVL(orVR,VL=VR)axisasafunctionofmagnetic eldsford=50nmand60nminter-dotseparations,respectively.Ineachplotthedataareshownforthesingletandlowesttripletstates.NotethatatB=0theDTPseparationforthesingletstateissmallerthanthatforthelowesttripletstatebecausethesingletisthegroundstate,whileatlargerB elds,thelowesttripletstatebecomesthegroundstateandtheorderoftheDTPseparationsisreversed.Inboth(a)and(b),theDTPseparationforthelowesttripletstatedecreasesfasterwithB eldsthanthatforthesingletstate.ThisisbecausetheDTPseparationisproportionaltoµ(2) µ(1)=EG(2) 2EG(1)fora xedVL=VRonthemaindiagonalofthestabilitydiagram(seeFigs.1and3).Forthesingletstate,EG(2)doesnotchangewiththeB eldwhileEG(1)decreaseswiththeB eldduetotheZeemane ect,thereforetheZeemancontributiontoµ(2) µ(1)increaseswiththeB eld.Forthetripletstate,theZeemancontributionstoEG(2)and2EG(1)cancelout,andµ(2) µ(1)isnota ectedbytheB eld.ThedecreaseoftheDTPseparationinthemagnetic eldwasalsorecentlyobservedexperimentally.8Theupper(lower)insetineach gureshowsthecorrespondingexchangeenergyJasafunctionofthemagnetic eldcalculatedbyEq.(8)with(without)theZeemane ect.Inbothcases,theZeemane ectinducesalineardepenedenceofJonB.However,in(a)giventhestrongcouplingbetweenthedots,theorbitalcontributiontoJdominatesatlowB eldsbeforebeingovercomebytheZeemaninduceddecreaseathigher eld;in(b),JistotallydominatedbytheZeemancontribution,whichdecreaseslinearlywiththeB parisonoftheB

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

elddependencesoftheDTPseparationandexchangeenergyintheabsenceoftheZeemane ectinFig.5showsthatthelattersaturatesatmuchlowervaluesofthemagnetic eldthantheformer.ThisisbecausetheDTPseparationisdeterminedbytheCoulombinteractionbetweenelectronswhichdecreasesastheelectronsbecomelocalizedbythemagnetic eldinindividualdots(withintheHeitler-Londonapproximation,thisdecreaseisproportionaltoB 2,Ref.13),whiletheexchangeenergyinabsenceoftheZeemane ectapproacheszeromuchfasterthantheCoulombinteractionsinceitisproportionaltotheoverlapbetweentheindividualelectronwavefunctionsthatdecaysexponentiallyfastinstrongmagnetic elds.2,13

Itisalsointerestingtocomparetheexactvaluesoftheexchangeenergy(seetheinsetsinFig.5)withthoseextractedfromthestabilitydiagramsinmagnetic eldsusingtheHubbardmodel.2,8Accordingtothismodel,Jest=4t2/(Vintra Vinter)where2tisthetunnel(symmetric-asymetric)splitting,VintraandVinteraretheintra-dotandinter-dotCoulombinteractions.FromthedatashowninFig.5,weestimatethevalueoftheinter-dotCoulombinteractionVinter≈3.4(2.0)meVford=50(60)nm,whichisgivenbytheDTPseparation(forthelowesttripletstate)inthelimitoflargemagnetic elds.Thesenumbersareingoodagreementwiththecorrespondingexpectationvalues C(r1,r2) oftheCoulombinteractionmatrix(3.5and2.2meV,respectively)obtainedfromdirectcalculations,therebycon rmingelectronlocalizationandQDsdecoupling.Sinceatzeromagnetic eld,theDTPseparationisequalto2t+Vinter,weobtain2t50(60)≈1.6(0.7)meVwhichisconsistentwiththeenergydi erencesbetweenthetwolowestsingle-particlelevelsof1.9(0.4)meV.AsVintra≈8meVisgivenbytheelectronadditionenergyinoneQDwhichisthedistancebetweenthe”corners”ofthelinearregionwheresingleelectronre-localizationoccursfromonedottotheotherintheN=2energydiagram(seeFig.2),theestimatedvaluesoftheexchangeenergybecomeJest50(60)50(60)≈0.6(0.08)meV.Thesenumbersareofthesameorderasthenumericallyexactvaluesof0.24(0.012)meV,buttheybothsigni cantlyoverestimatethecomputeddata,andtherefore,canonlybeusedasageneralguidelinetogaugethemagnitudeoftheexchangecouplingindoubleQDs.Theoverestimationisduetothedi erencebetweenCoulombenergiesinthesingletandtripletstatesthatlowerstheexchangeenergy,2butwhichisnottakenintoaccountinthesimpleHubbardmodel.

Insummary,wecomputedthestabilitydiagramformodeldoubleQDsystemspopulatedwithuptotwoelectronsinmagnetic eldsusingnumericallyexactdiagonalizationoftheone-

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

andtwo-electronHamiltonian.Twointer-dotseparationsd=50and60nmcorrespondingtostrongandweakinter-dotcouplingwereconsidered.Wefoundthatintheweak-couplingregimethecurvatureofthechemicalpotentialµ(2)islargerthanthatoneofµ(1)whileinthestrong-couplingcasethesituationisreversed.Hence,byanalyzingthechemicalpotentialvariationscausedbyexternalbiasesandmagnetic elds,itispossibletodistinguishbetweenstrongandweakinter-dotcoupling,evenifthecurvaturesareofthesameorderinbothcases.Theevolutionofthestabilitydiagramsinmagnetic eldsconformstothegeneralideaofenhancedelectronlocalizationwithincreasing eldstrength.Theexchangeenergiesextractedfromthestabilitydiagramsshowedthatthesevaluesaresigni cantlyoverestimatedwhencomparedwithnumericallyexactdata.

ThisworkissupportedbyDARPAQUISTprogramthroughAROGrantDAAD19-01-1-0659.TheauthorsthanktheMaterialComputationalCenterattheUniversityofIllinoisthroughNSFGrantDMR99-76550.LXZthankstheComputerScienceandEngineeringFellowshipProgramattheUniversityofIllinoisforsupport.

1

2

3D.LossandD.P.DiVincenzo,Phys.Rev.A57,120(1998).G.Burkard,D.Loss,andD.P.DiVincenzo,Phys.Rev.B59,2070(1999).X.HuandS.DasSarma,Phys.Rev.A61,062301(2000);W.DybalskiandP.Hawrylak,Phys.Rev.B72,205432(2005).

4

5

6A.Harju,S.Siljam¨aki,andR.M.Nieminen,Phys.Rev.Lett.88,226804(2002).B.Szafran,F.M.Peeters,andS.Bednarek,Phys.Rev.B70,205318(2004).W.G.vanderWiel,S.DeFranceschi,J.M.Elzerman,T.Fujisawa,S.Tarucha,andL.P.Kouwenhoven,Rev.Mod.Phys.75,1(2003).

7H.Qin,A.W.Holleitner,K.Eberl,andR.H.Blick,Phys.Rev.B64,241302(2001);J.M.Elzerman,R.Hanson,J.S.Geidanus,L.H.W.VanBeveren,S.DeFranceschi,L.M.K.Vandersypen,S.Tarucha,andL.P.Kouwenhoven,Phys.Rev.B67,161308(R)(2003);T.Hayashi,T.Fujisawa,H.D.Cheong,Y.H.Jeong,andY.Hirayama,Phys.Rev.Lett.91,226804(2003);F.Ancilotto,D.G.Austing,M.Barranco,R.Mayol,K.Muraki,M.Pi,S.Sasaki,andS.Tarucha,Phys.Rev.B67,205311(2003);J.R.Petta,A.C.Johnson,J.M.Taylor,ird,A.Yacoby,M.D.Lukin,C.M.Marcus,M.P.Hanson,andA.C.Gossard,Science309,

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

2180(2005).

8

9

10

11T.Hatano,M.Stopa,andS.Tarucha,Science309,268(2005).D.V.MelnikovandJ.-P.Leburton,Phys.Rev.B73,085320(2006).L.-X.Zhang,D.V.Melnikov,andJ.-P.Leburton(unpublished).Thevaluesofthechemicalpotentialsatwhichthecontourplotsaredrawnarechosentofacilitatedatarepresentation.Fortheinvestigatedmagnetic elds,therelativechangeofthecurvatureofaspeci cchemicalpotentialandtheDTPseparationislessthan5%fordi erentreferencevalues.

12Thesameconsiderationisobviouslyvalidforthetripletstatesaswell,albeitwithalargerquasilinearregion.

13D.V.MelnikovandJ.-P.Leburton(unpublished).

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

FIGURES

V [meV]x [nm] µ [meV]-10 µ [meV]-15-20

-25

VL=VR [meV]

FIG.1:(Coloronline)(a)Thecon nementpotentialford=50nm(red)andd=60nm(blue)atVL=VR=25meV.Chemicalpotentialsµ(1)(solid)andµS(2)(dashed)vs.VL=VRfor(b)d=50nmand(c)d=60nm.InbothofthemthehorizontallineindicatesthevaluesofthechemicalpotentialatwhichthecontoursinFig.3aredrawn.

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

VL [meV]

VL [meV]L L FIG.2:(Coloronline)Surface(contour)plotsofthetotalenergiesforN=1(leftcolumn)andN=2,singlet(rightcolumn)atd=50nm(toprow)andd=60nm(bottomrow).Inallplotstheenergiesdecreasefromthelowerlefttotheupperrightcorner.

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

29

27

VR [meV]25

23

21VL [meV]FIG.3:(Coloronline)Contourplotsofthechemicalpotentialsµ(1)andµS(2)asfunctionsofVLandVRford=50nm(red)andd=60nm(blue).Theturningpointsonthecontourlinesareindicatedbysoliddotsandthedottedlineisaguidefortheeyesalongthemaindiagonal(VL=VR).Thenumbersontheleft(right)withinparenthesesgivetheelectronnumberintheleft(right)dot[the(0,0)regionislocatedatthelowerleftcornerbelowtheµ(1)branchford=50nm].

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

FIG.4:(Coloronline)(a)Contourplotsofthechemicalpotentialsµ(1)(singleelectronstate,lowerbranches,solidcurves),µS(2)(two-electronsingletstate,upperbranches,solidcurves),andµT(2)(thelowesttwo-electrontripletstate,upperbranches,dashedcurves)atdi erentmagnetic eldsford=50nm.(b)Sameas(a)butatd=60nm.Inthecaseofd=60nmandB=0,thecontourlinesforµS(2)andµT(2)areindistinguishableonthescaleofthe gure.

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

FIG.5:(Coloronline)Double-tripletpointseparationalongVL(orVR,VL=VR)axisasafunctionofthemagnetic eldBfor(a)d=50nmand(b)d=60nm.Thedataforsingletandthelowesttripletstatesarelabeledby” ”(bluecurve)and”+”(redcurve),respectively.Theupper(lower)insetineach gureshowstheexchangeenergyJasafunctionofthemagnetic eldwith(without)theZeemane ect.ThedataintheinsetsareobtainedatVL=VR=25meV.

The charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. One- and two-particle Schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy

TABLES

TABLEI:Comparisonofthemagnitudeofthesecondorderderivativeκ(1)andκ(2)ofthechemicalpotentialcurvesµ(1)andµ(2)neartheirturningpointsforvariousinter-dotseparationsandmagnetic elds.κS(2)andκT(2)denotethevaluesforthesingletandthelowesttripletstate,respectively.

d=50nm

B(T)κ(1)κS(2)[κT(2)]κ(1)d=60nmκS(2)[κT(2)]

本文来源:https://www.bwwdw.com/article/1xnj.html

Top