福州中考数学压轴题专题复习—锐角三角函数的综合

更新时间:2023-04-13 17:06:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.

【答案】553

【解析】

【分析】

如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.

【详解】

解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.

∵AM⊥CD,

∴∠QMP=∠MPO=∠OQM=90°,

∴四边形OQMP是矩形,

∴QM=OP,

∵OC=OD=10,∠COD=60°,

∴△COD是等边三角形,

∵OP⊥CD,

∠COD=30°,

∴∠COP=1

2

∴QM=OP=OC?cos30°=3

∵∠AOC=∠QOP=90°,

∴∠AOQ=∠COP=30°,

∴AQ=1

OA=5(分米),

2

∴AM=AQ+MQ=5+3

∵OB∥CD,

∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米),

在Rt△PKE中,EK=22

-=26(分米),

EF FK

∴BE=10?2?26=(8?26)(分米),

在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米),

在Rt△FJE′中,E′J=22

63

-(2)=26,

∴B′E′=10?(26?2)=12?26,

∴B′E′?BE=4.

故答案为:5+53,4.

【点睛】

本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

2.如图,海上观察哨所B位于观察哨所A正北方向,距离为25海里.在某时刻,哨所A 与哨所B同时发现一走私船,其位置C位于哨所A北偏东53°的方向上,位于哨所B南偏东37°的方向上.

(1)求观察哨所A与走私船所在的位置C的距离;

(2)若观察哨所A发现走私船从C处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D处成功拦截.(结果保留根号)

(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)

【答案】(1)观察哨所A与走私船所在的位置C的距离为15海里;(2)当缉私艇以每小时617D处成功拦截.

【解析】

【分析】

(1)先根据三角形内角和定理求出∠ACB=90°,再解Rt△ABC,利用正弦函数定义得出

AC 即可;

(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.

【详解】

(1)在ABC △中,180180375390ACB B BAC ?????∠=-∠-∠=--=.

在Rt ABC 中,sin AC B AB =,所以3sin 3725155AC AB ?=?=?=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.

(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4sin 15125

CM AC CAM =?∠=?=,3cos 1595

AM AC CAM =?∠=?=. 在Rt ADM △中,tan MD DAM AM

∠=, 所以tan 7636MD AM ?=?=.

所以222293691724AD AM MD CD MD MC =+=+==-=,.

设缉私艇的速度为v 海里/小时,则有

2491716=,解得617v =. 经检验,617v =是原方程的解. 答:当缉私艇以每小时617海里的速度行驶时,恰好在D 处成功拦截.

【点睛】

此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.

3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于切点为G ,连接AG 交CD 于K .

(1)求证:KE=GE ;

(2)若KG 2=KD?GE ,试判断AC 与EF 的位置关系,并说明理由;

(3)在(2)的条件下,若sinE=,AK=,求FG的长.

【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .

【解析】

试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出

∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;

(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD?GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;

(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.

试题解析:(1)如图1,连接OG.

∵EG为切线,

∴∠KGE+∠OGA=90°,

∵CD⊥AB,

∴∠AKH+∠OAG=90°,

又∵OA=OG,

∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.

(2)AC∥EF,理由为连接GD,如图2所示.

∵KG2=KD?GE,即,

∴,

又∵∠KGE=∠GKE,

∴△GKD∽△EGK,

∴∠E=∠AGD,

又∵∠C=∠AGD,

∴∠E=∠C,

∴AC∥EF;

(3)连接OG,OC,如图3所示,

∵EG为切线,

∴∠KGE+∠OGA=90°,

∵CD⊥AB,

∴∠AKH+∠OAG=90°,

又∵OA=OG,

∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.

∵sinE=sin∠ACH=

,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,

∴CK=AC=5t,

∴HK=CK-CH=t.

在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,

即(3t)2+t2=(2)2,解得t=.

设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,

由勾股定理得:OH2+CH2=OC2,

即(r-3t)2+(4t)2=r2,解得r= t=.

∵EF为切线,

∴△OGF为直角三角形,

在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,

∴FG=

【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.

4.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60o.

(1)点B的坐标是,∠CAO= o,当点Q与点A重合时,点P的坐标

为;

(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.

【答案】(1)(6,3). 30.(3,3)(2)

()

()()()243x 430x 33

31333x x 3x 5232S {23x 1235x 93

543x 9x

+≤≤-+-<≤=-+<≤> 【解析】

解:(1)(6,23). 30.(3,33). (2)当0≤x≤3时,

如图1,

OI=x ,IQ=PI?tan60°=3,OQ=OI+IQ=3+x ;

由题意可知直线l ∥BC ∥OA ,

可得EF PE DC 31==OQ PO DO 333==,∴EF=13(3+x ), 此时重叠部分是梯形,其面积为:

EFQO 14343S S EF OQ OC 3x x 43233

==+?=+=+梯形()() 当3<x≤5时,如图2,

)HAQ EFQO EFQO 221S S S S AH AQ 243331333 3x 3=?=-=-??=+---梯形梯形

当5<x≤9时,如图3,

12S BE OA

OC 312x 2323 =x 1233=+?=--+()()。 当x >9时,如图4,

111833S OA AH 6=22x x

=?=??. 综上所述,S 与x 的函数关系式为:

))))243x 430x 33

313333x 5S {23x 1235x 93

543x 9+≤≤+<≤=-+<≤>. (1)①由四边形OABC 是矩形,根据矩形的性质,即可求得点B 的坐标: ∵四边形OABC 是矩形,∴AB=OC ,OA=BC , ∵A (6,0)、C (0,3∴点B 的坐标为:(6,3

②由正切函数,即可求得∠CAO 的度数:

∵OC 233tan CAO OA ∠=∴∠CAO=30°. ③由三角函数的性质,即可求得点P 的坐标;如图:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,

∵∠PQO=60°,D (0,33),∴PE=33.

∴0PE

AE 3tan 60==.

∴OE=OA ﹣AE=6﹣3=3,∴点P 的坐标为(3,33).

(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x >9时去分析求解即可求得答案.

5.如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-x -与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .

(1)请直接写出OE 、⊙M 的半径r 、CH 的长;

(2)如图2,弦HQ 交x 轴于点P ,且DP : PH =3 : 2,求cos ∠QHC 的值;

(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT

交x 轴于点N .是否存在一个常数a ,始终满足MN·

MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.

【答案】(1)OE=5,r=2,CH=2

(2);

(3)a=4

【解析】

【分析】

(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;

(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;

(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,

∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.

【详解】

(1)OE=5,r=2,CH=2

(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,

易知△CHP∽△DQP,故,得DQ=3,由于CD=4,

(3)如图2,连接AK,AM,延长AM,

与圆交于点G,连接TG,则

由于,故,;

而,故

在和中,;

故△AMK∽△NMA

;

即:

故存在常数,始终满足

常数a="4"

解法二:连结BM,证明∽

6.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

(1)连接GD,求证:△ADG≌△ABE;

(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)

(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.

【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =

43

.理由见解析. 【解析】

【分析】

(1)根据三角形判定方法进行证明即可.

(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.

(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.

【详解】

(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,

∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,

∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,

∴∠BAE =∠DAG ,

在△ADG 和△ABE 中, ADG ABE DAG BAE AD AB ∠=∠??∠=∠??=?

∴△ADG ≌△ABE (AAS ).

(2)解:∠FCN =45°,理由如下:

作FH ⊥MN 于H ,如图1所示:

则∠EHF =90°=∠ABE ,

∵∠AEF =∠ABE =90°,

∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,

∴∠FEH =∠BAE ,在△EFH 和△ABE 中,

EHF ABE FEH BAE AE EF ∠=∠??∠=∠??=?

∴△EFH ≌△ABE (AAS ),

∴FH =BE ,EH =AB =BC ,

∴CH =BE =FH ,

∵∠FHC =90°,

∴∠FCN =45°.

(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:

作FH ⊥MN 于H ,如图2所示:

由已知可得∠EAG =∠BAD =∠AEF =90°,

结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,

∴EH =AD =BC =8,

∴CH =BE , ∴EH FH FH AB BE CH =

=; 在Rt △FEH 中,tan ∠FCN =8463

FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =

43. 【点睛】

本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.

7.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =4,动点P 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.过点P 作PD ⊥AC 于点D (点P 不与点A ,B 重合),作∠DPQ =60°,边PQ 交射线DC 于点Q .设点P 的运动时间为t 秒.

(1)用含t 的代数式表示线段DC 的长:_________________;

(2)当t =__________时,点Q与点C重合时;

(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.

【解析】

【分析】

(1)先求出AC,用三角函数求出AD,即可得出结论;

(2)利用AQ=AC,即可得出结论;

(3)分三种情况,利用锐角三角函数,即可得出结论.

【详解】

(1)∵AP= , AB=4,∠A=30°

∴AC= , AD=

∴CD=;

(2)AQ=2AD=

当AQ=AC时,Q与C重合

即=

∴t=1;

(3)①如图,当PQ的垂直平分线过AB的中点F时,

∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.

∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=

②如图,当PQ的垂直平分线过AC的中点N时,

∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.

在Rt△NMQ中,

∵AN+NQ=AQ,∴

③如图,当PQ的垂直平分线过BC的中点F时,

∴BF=BC=1,PE=PQ=t,∠H=30°.

∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.

在Rt△PEH中,PH=2PE=2t.

∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.

即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.

【点睛】

此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.

8.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.

(1)求AE的长及sin∠BEC的值;

(2)求△CDE的面积.

【答案】(1)2,sin∠BEC=3

5

;(2)

75

4

【解析】

【分析】

(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得

∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,

2,

设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;

(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得

S△CDE=S△AED=

2

4

AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求

出y,继而可求得答案.【详解】

(1)如图,作CF⊥BE于F点,

由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,

又∵点C是OB中点,

∴OC=BC=6,CF=BF=32,

设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,

在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,

解得:x=52,

故可得sin∠BEC=

3

5

CF

CE

,AE=52;

(2)如图,过点E作EM⊥OA于点M,

则S△CDE=S△AED=1

2

AD?EM=

1

2

AD×AEsin∠EAM=

1

2

AD?AE×sin45°=

2

4

AD×AE,

设AD=y,则CD=y,OD=12-y,

在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,

解得:y=15

2

,即AD=

15

2

故S△CDE=S△AED=

2

4

AD×AE=

75

4

【点睛】

本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.

9.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.

(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形;

(2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°).

①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B .

②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由.

【答案】(1)证明见解析;(2)①证明见解析;②

12或33 . 【解析】

【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形;

(2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ;

②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.

【详解】(1)由翻折可知:∠DFP=∠DFQ ,

∵PF ∥BC ,

∴∠DFP=∠ADF ,

∴∠DFQ=∠ADF ,

∴△DEF 是等腰三角形;

(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,

∵∠P′DF′=∠PDF ,

∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC ,

∴∠P′DC=∠F′DB ,

由旋转的性质可知:△DP′F′≌△DPF ,

∵PF ∥BC ,

∴△DPF ∽△DCB ,

∴△DP′F′∽△DCB ∴''

DC DP DB DF , ∴△DP'C ∽△DF'B ;

②当∠F′DB=90°时,如图所示,

∵DF′=DF=12BD , ∴'12

DF BD =, ∴tan ∠DBF′='12

DF BD =;

当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;

当∠DF′B=90°时,如图所示,

∵DF′=DF=

12

BD , ∴∠DBF′=30°, ∴tan ∠DBF′=3.

【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.

10.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.

(1)求证:DF ⊥AC ;

(2)若∠ABC=30°,求tan ∠BCO 的值.

【答案】(1)证明见解析; (2) tan∠

【解析】

试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.

(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.

试题解析:证明:连接OD

∵DE为⊙O的切线, ∴OD⊥DE

∵O为AB中点, D为BC的中点

∴O D‖AC

∴DE⊥AC

(2)过O作OF⊥BD,则BF=FD

在Rt△BFO中,∠ABC=30°

∴OF=1

2OB

∵BD=DC, BF=FD,∴

在Rt△OFC中,tan∠

BCO=

1

9

OB

OF

FC

==.

点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识

点,有一定的综合性,根据已知得出OF=1

2

OB,

OB是解题关

键.

本文来源:https://www.bwwdw.com/article/8hul.html

Top