世界七大数学难题与Hilbert的23个问题

更新时间:2024-03-30 08:41:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

世界七大数学难题与Hilbert的23个问题

继上文《数学家的猜想错误》提到的七大数学难题和大卫·希尔伯特23个数学难题,今天我们就来详细了解下。 世界七大数学难题,这七个“千年大奖问题”是:

NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。千年大奖问题 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东做了证明的封顶工作。) “千年大奖问题”公布以来, 在世界数学界产生了强烈反响。

这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程。01庞加莱猜想1904年,法国数学家亨利·庞加莱(Henri Poincaré)在提出这个猜想:'任何一个单连通的,封闭的三维流形一定同胚于一个三维的球面。

'

换一种简单的说法就是:一个闭的三维流形就是一个没有边界的三维空间;单连通就是这个空间中每条封闭的曲线都可以连续的收缩成一点,或者说在一个封闭的三维空间,假如每条封闭的曲线都能收缩成一点,这个空间就一定是一个三维圆球。 懵逼中

为了大家便于理解庞加莱猜想,有人给出了一个十分形象的例子:假如在一个完全封闭(足够结实)的球形房子里,有一个气球(皮是无限薄的),现在我们将气球不断吹大,到最后,气球的表面和整个房子的墙壁是完全贴住,没有缝隙。面对这个看似十分简单的猜想,无数位数学家前仆后继,绞尽脑汁,甚至是倾其一生都没能证明这个猜想。希腊数学家帕帕奇拉克普罗斯直到临终前都在为庞加莱猜想的证明而努力,最后只能把一叠厚厚的手稿交给了一位数学家朋友保管。

直到2003年,俄罗斯的数学家格里戈里·佩雷尔曼十分大胆地将他花费了8年时间的研究成果,上传到专门刊登学术论文的网站上,说自己已经证明庞加莱猜想。2005年10月,佩雷尔曼的证明终于通过了专家的验证,他成为了“千禧年数学大奖”的第一位也是至今唯一一位获奖人。(其他6个还没解决)02霍奇猜想英国数学家道格拉斯·霍奇(Douglas

Hodge)在国际数学大会上提出了这个猜想:“在非奇异复射影代数簇上,任一霍奇类是代数闭链类的有理线性组合。” 霍奇猜想集中体现了现代数学发展中抽象特征在滚雪球般扩大的趋势,霍奇猜想的解决将在数学三大分支(分析、拓扑、代数几何)之间找到某种基本的内在联系。

霍奇猜想是代数几何里的一个重大问题,不过,到现在对于这个问题的解决几乎是没有什么进展。03黎曼猜想在1900年在国际数学大会上希尔伯特提出的23个数学问题中的第8个问题就是黎曼假设,而经历了100年,还是没有人能解决,于是,在2000年千年数学大会上克雷研究所再次将黎曼猜想提出来,将其列为世界七大难题之一。

关于黎曼猜想的提出,也是十分有趣。1859年,德国数学家黎曼(Riemann)被选为了柏林科学院的通信院士。黎曼对柏林科学院给予他的这一份崇高的荣誉表示非常感激,而为了表达自己的感激之情,他决定将自己的一篇论文献给柏林科学院。

这篇论文就是《论小于给定数值的素数个数》,研究的就是数学家们一直很感兴趣的一个问题——素数的分布。黎曼将素数的分布问题归结为函数的问题,认为有一个特殊的函数(黎曼ζ函数),使其取值为零的一系列的特殊的点(黎曼ζ函数的非平凡零点)决定着素数分布的细致规律。 不过,“懒人”黎曼的这篇论文仅仅只有8页,里面的内容极

为简练,惜字如金得让好几代数学家为之“吐血”。

黎曼列出了黎曼ζ函数的一些重要性质,而估计是关于这些性质的证明在黎曼眼里根本不是事儿,所以,在这些性质的后面,都静悄悄地跟着一个让数学家抓狂的“证明从略”。。。(黎曼表示只是想让其他数学家练练手)

幸运的是,在黎曼去世后的一百多年里,世界上最优秀的数学家已经成功证明了黎曼的这些断言,而且在探索的过程中,许多新的数学分支也由此产生。唯有一个断言至今都还没有解决,而且黎曼也明确表明了这个命题自己也无法证明,这就是黎曼猜想:关于黎曼ζ函数的那些非平凡零点,它们都分布在一个带状区域上(已被证明),黎曼猜测它们全都位于该带状区域正中央的一条直线上(临界线),这就是所谓的黎曼猜想。

黎曼猜想是当今数学界最重要、最期待解决的数学难题。它与众多的数学命题有密切关联。

据统计,在当今数学文献中以黎曼猜想(或其推广形式)的成立为前提的数学命题就已经超过1000多条。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。04BSD猜想贝赫(Birch)和斯维讷通-戴尔

(Swinnerton-Dyer)猜想是指:对有理数域上的任一椭圆曲线,其L函数在1的化零阶等于此曲线上有理点构成的阿贝尔

(Abel)群的秩。在2012年,中国数学家田野在浦港工大作了关于BSD猜想的报告,连续用5个多小时来证明了“存在无数个同余数”,震惊全场。

而该领域泰斗剑桥大学教授约翰·科茨(JohnCoates)也给予了高度的评价:虽然这并不是完美的答案,但是对于解决BSD猜想确实是一个巨大的飞跃。05NP-C问题在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。这样就会浪费很多时间。所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算。人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?

这就是斯蒂文·考克于1971年提出的NP=P?的猜想(到底是NP等于P,还是NP不等于P)。

NP(Non-deterministic Polynomial)是多项式复杂程度的非确定性问题。而如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NP

完全问题(Non-deterministic Polynomial complete problem)。NP完全问题是NP类中“最难”的问题,也就是说它们是最可能不属于P类的。这是因为任何NP中的问题可以在多项式时间内变换成为任何特定NP完全问题的一个特例。属于计算机科学理论的一个基本概念。

NP完全问题排在了百万美元大奖的首位,出现在了纯粹科学研究,通信、交通运输、工业设计和企事业管理部门,社会军事、政治和商业的斗争等各个领域,但是除了运用穷举法求解(计算的时间随问题的复杂程度成指数的增长,很快就会变得不可计算。)之外,人们还没发现有价值的求解方法。06杨-米尔斯理论1954年,物理学家杨振宁和R.L.米尔斯提出了规范场理论,即杨-米尔斯理论(Yang-Mills),理论中出现的杨-米尔斯方程是一组数学上未曾考虑到的极有意义的非线性偏微分方程。他们发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。 而基于杨-米尔斯方程的预言也已经被全世界范围内的高能实验所证明。然而,已经被大多数物理学家所确认,并且在他们的对于'夸克'的不可见性的解释中应用的'质量缺口'假设,从来没有得到一个数学上令人满意的证实。07N-S方程斯托克斯

纳维叶-斯托克斯(Navier-Stokes)方程是指描述粘性不可压缩流体动量守恒的运动方程。是由纳维于1821年以及斯托

克斯于1845年分别建立的,在直角坐标系中,其矢量形式为=-?p+ρF+μΔv,式中ρ为流体密度,p为压强,u为速度矢量,F为作用于单位质量流体的彻体力,?为哈密顿算子 ,Δ为拉普拉斯算子。N-S方程反映了粘性流体流动的基本力学规律,在流体力学中有十分重要的意义。它描述了大量对学术和经济有用的现象的物理过程。它们可以用于建模天气,洋流,管道中的水流,星系中恒星的运动,翼型周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析等等。

它是一个非线性偏微分方程,求解非常困难和复杂,目前只有在某些十分简单的流动问题上能求得精确解;但在有些情况下,可以简化方程而得到近似解。

数学家和物理学家深信,无论是微风还是湍流,都可以通过理解N-S方程的解,来对它们进行解释和预言。

直到现在,关于N-S方程的存在性与光滑性的奥秘,人类还在继续探索中。。。 Hilbert提出的23个问题

大卫·希尔伯特(David Hilbert,1862年1月23日-1943年2月14日),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。他在数学上的领导地位充分体现于: 1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。希

尔伯特23个问题及其解决情况: 1. 连续统假设

1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。

1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。

1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。

因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2. 算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性。

希尔伯特曾提出用形式主义计划的证明论方法加以证明。 1931年,哥德尔发表的不完备性定理否定了这种看法。 1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。

1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3. 两个等底等高四面体的体积相等问题

问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4. 两点间以直

线为距离最短线问题

此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。

1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的 这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?

中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化

希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。

1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性

1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0 ,1,和任意代数无理数β证明了αβ 的超越性。 8.素数问题 包括黎曼猜想、

哥德巴赫猜想及孪生素数问题等。

一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。

目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律

该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10. 丢番图方程的可解性 能求出一个整系数方程的整数根,称为丢番图方程可解。 希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?

1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。 11. 系数为任意代数数的二次型 H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。 12. 将阿贝尔域上的克罗克定理推广到任意的代数有理域上去

这一问题只有一些零星的结果,离彻底解决还相差很远。 13. 不可能用只有两个变数的函数解一般的七次方程 七次方程 的根依赖于3个参数a、b、c,即x=x (a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。 14. 证明某类完备函数系的有限性

本文来源:https://www.bwwdw.com/article/k8qr.html

Top