抓斗设计计算说明书

更新时间:2024-03-08 02:49:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

毕业设计(论文)

设计题目 所属学院 专 业 班 级 学生姓名 指导老师 完成日期 抓斗的设计

1

抓斗的设计

摘要

起重机是各种工程建设广泛应用的重要起重设备。它对减轻劳动强度,节省人力,降低建设成本,提高施工质量,加快建设速度,实现工程施工机械化起着十分重要的作用。

在起重机中,用以提升或下降货物的机构称为起升机构。起升机构是起重机中最重要、最基本的机构,其工作的好坏直接影响整台起重机的工作性能。起升机构一般由驱动装置、钢丝绳卷绕系统、取物装置和安全保护装置等组成。驱动装置包括电动机、联轴器、制动器、减速器、卷筒等部件。

抓斗是起重机装卸散料的一种取物装置。它的抓取和开卸动作由司机在司机室内操作,不需要辅助人员协助,因而生产率较高,广泛用于港口、车站、矿山和料场。通常抓斗按开闭方式分成三类单绳抓斗、双绳抓斗和马达抓斗。其中双绳抓斗发展较快,常用的是长撑杆抓斗。

本文主要是对抓斗的结构设计、起升机构的设计计算和对抓斗的3D,为了能够更加清晰的展示抓斗给工程建设带来的方便之处和充分演示抓斗的工作原理,需要对抓斗的工作过程进行仿真,在仿真过程中将使用到一些艺术的表现手法,使仿真过程更接近现实。

此次设计的主要目的是要通过对抓斗和起升机构的设计计算以达到了解起重机设计的过程。

关键词:抓斗;起升机构;设计;仿真

2

Design and simulation of Grab

Abstract

The crane is an important jack-up equipment that is utilized widely in all kinds of the engineering constructions. It plays an important role in lessening the work intensity, conserving the labor power, reducing the cost of construction, enhancing the quality of carrying out construction, quickening the speed of the construction, and achieving the mechanization of carrying out the project.

In the crane, the organ used to promote or descend the cargoes is called the elevating mechanism. The elevating mechanism is the most important and fundameatal organization of the crane. Whether it works well or not will directly affect the work property of the whole crane. The elevating mechanism consists of the drive device, circling and coiling system of the steel cable, drawing goods device and the safely protecting device. The drive device contains the electric motor, joint-shaft instrument, brake, decelerated instrument and the reel.

The grab bucket is a kind of the drawing goods device that helps in the hoist’s loading and unloading and bulking materials. The movements of grasping and unloading are operated in the driver’s room. It doesn’t need any auxiliary people to assist, therefore the productivity is higher and it is extensively used in the ports, stations, mines and synthetic yards. According to its manners of opening and closing, the grab bucket is usually divided into three varieties, single-rope grab bucket, double-rope grab bucket and motor grab bucket. The development of the double-rope grab bucket is more rapid. What we always use is the grab bucket of the long braced rod.

The paper mainly revolves around the structural design of the grab bucket, the design and calculation of the elevating mechanism and the 3D simulation of the grab bucket. In order to reveal more dearly the convenience that the grab bucket brings to the engineering construction and to demonstrate abundantly the work principle of the grab bucket, it needs to simulate the operation process of the grab bucket and it will apply some manifestated technique of the art in the process of simulation to make it be closed to the reality.

The main purpose of this design is to understand the process of the hoist’s design by the design and calculation to the grab bucket and the elevating mechanism. Key word: Grab; Hoisting mechanism; Design; Simulation

3

目 录

摘要·····················································Ⅰ Abstract··················································Ⅱ 1 前言···················································1 2 抓斗的设计·············································2 2.1抓斗类型的选择和介绍··································2 2.2抓斗自重的确定········································2 2.3抓斗自重的分配········································3 2.4颚板宽度··············································3 2.5抓斗最大开度··········································4 2.6抓斗的几何参数········································5 2.7抓斗颚板的侧面形状····································6 2.8滑轮组倍率············································7 2.9抓斗的验算············································7 3 起升机构的设计计算·····································9 3.1起升机构驱动装置布置方式的选择························9 3.2钢丝绳与卷筒的选择····································9 3.3滑轮组的选择··········································12 3.4电动机的选择··········································12 3.5减速器的选择··········································15

4

3.6制动器的选择··········································16 3.7连轴器的选择··········································18 3.8起制动时间验算········································19 3.9制动时间验算··········································20 4 总结···················································23 5 致谢···················································24 参考文献·················································25 附录A···················································26 附录B···················································31

5

1前言

起重机械是各种工程建设广泛应用的重要起重设备。它对减轻劳动强度,节省人力,降低建设成本,提高施工质量,加快建设速度,实现工程施工机械化起着十分重要的作用。 它适用于工业建筑、民用建筑和工业设备安装等工程中的结构与设备的安装工作以及建筑材料、建筑构件的垂直运输与装卸工作。它也广泛应用于交通、农田、水电、和军工等部门的装卸和安装工作。,不仅解决了人力无法胜任的作业,而且能保证工程质量,缩短工期,降低成本,成为极其重要的施工机械。其特点是:能在一定范围内垂直起升和水平移动物品的机械,动作间歇性和工作循环性。可以说使用范围十分的广,是现在工程中的主要设备。

起升机构是起重机最主要的机构,可以实现重物的垂直上下运动,起升机构是起重机中最重要、最基本的机构,其工作的好坏直接影响整台起重机的工作性能。起升机构一般由驱动装置、钢丝绳卷绕系统、取物装置和安全保护装置等组成。驱动装置的运动,通过钢丝绳卷绕系统使得取物装置做垂直上下直线运动。

抓斗是起重机装卸散料的一种取物装置。它的抓取和开卸动作由司机在司机室内操作,不需要辅助人员协助,因而生产率较高,广泛用于港口、车站、矿山和料场。此次设计我选用长撑杆双绳抓斗。双绳抓斗的支持绳和闭合绳各由一套卷扬机构操纵,生产率高,应用十分广泛。若卷扬机构采用双联卷筒,则支持绳和闭合绳各为两根,称为四绳抓斗。由于四绳抓斗的开闭绳和支持绳成对布置,作业稳定性好,不易打转,同时,钢丝绳、卷筒和滑轮的直径可相应减小。

抓斗根据被抓取散料的容量(?)分为:轻型抓斗(??1.2t/m3)、中型抓斗(??1.2 t/m3—2.0 t/m3)、重型抓斗(?=2.0 t/m3—2.6 t/m3)、特重型抓斗(??2.6 t/m3)。 根据抓斗的操作特点,可分为单绳抓斗、双绳抓斗和马达抓斗。单绳抓斗只用一根工作绳,它用来支持和开闭抓斗,即又作支持绳又做开闭绳,只由单卷筒驱动,可作为起重机的备用取物装置。但抓斗上需增设闭锁装置,构造复杂,生产率低,不宜用于大量或经常装卸散粒物品的地方。双绳抓斗开闭绳与支持绳用双卷筒分别驱动以实现颚板开闭或起升下降。构造和操作简单,自重较轻,对于多种物料适应性强,生产率高,是目前最典型和用的最广泛的一种抓斗型式。通过任务书所提供的资料,选择设计的抓斗为四绳抓斗。

该设计主要是设计抓斗和起升机构,在做该设计的过程中能够熟悉抓斗的设计计算和CAD画图,以及如何选取最佳的起升机构方案,并会通过计算出的结果在资料中选取正确的标准件,再以CAD制图的方式把起升机构和抓斗以及滑轮轴表示出来。最后通过计算机的仿真将抓斗抓取和放下物料的过程生动的展现出来。

6

2抓斗的设计

抓斗是起重机装卸散料的一种取物装置。它的抓取和开卸动作由司机室内操作,不需要辅助人员协助,因而生产率较高,广泛用于港口、车站、矿山和料场。

抓斗按开闭方式分成三类:单绳抓斗、双绳抓斗和马达抓斗。其中双绳抓斗发展较快,除常用长撑杆抓斗和多颚抓斗外,还有剪式抓斗、耙集式抓斗和钳式抓斗等。

2.1 抓斗类型的选折和介绍

2.1.1双绳抓斗简介

双绳抓斗开闭绳与支持绳用双卷筒分别驱动以实现颚板开闭或起升下降,只能用于专门的起升机构中,不能作为普通起重机的备用取物装置,但结构和操作简单自重轻,对于多种物料适应性强,生产率高,是目前最典型和用的最广泛的一种抓斗型式。

长撑杆抓斗(图1)是抓斗的基本型式。由颚板、长承梁、下承梁、撑杆和闭合滑轮组组成。长撑杆抓斗对各类散料具有良好的适应性,且重心低因而获得广泛的应用。

1-上横梁 2-定轴板 3-臂架 4-下横梁 5-头部 6-颚板

图1 长撑杆抓斗机构图

2.1.2抓斗的受力分析

双绳抓斗在工作中其开闭绳张力ST,颚板刃口切入力Fc和撑杆在铰点上的推力N,对抓斗的结构强度和抓取性能有着重要的影响。

7

图2为开闭绳和支撑绳在抓斗作业过程中的变化情况,图中S1为支撑绳拉力。

空斗下降抓取12(起升空斗下降

图2 抓斗钢丝绳张力变化

根据图2取开闭绳和支撑绳的拉力为总载荷的100%和66%。

2.2 抓斗自重的确定

抓斗自重是影响抓取能力的重要因素。抓斗自重既是抓斗产生抓取力矩的来源,因为自重大,抓取散料时的垂直压力大,抓取的散料量也多,设计抓斗时必须保证有足够的自重。

抓斗自重按公式2.1确定: Gd=K1·Q (2.1) 式中:Q——抓斗起重机额定起重量(t); K1——抓斗自重系数,可由表1查出。

表1 抓斗自重系数K1

0.63 0.434 0.8 0.429 1.0 0.426 1.25 0.420 1.60 0.416 2.00 0.410 2.50 0.408 3.20 0.400 散料容重(t/m) 抓斗自重系数K1 3 8

由开题给定的容重?=0.9-1.0 t/m3,取?=1 t/m3,故K1=0.426。所以:

Gd=K1·Q=0.426×16=6.816 t

2.3 抓斗自重的分配

抓斗各部分重量的分配对抓取性能有很大影响。抓取各部分重量分配可参照下式进行:

Gdi=K2·Gd (2.2) 式中:Gdi——抓斗各部分自重(t);

K2——抓斗自重分配系数,可由表2选取。

表2 抓斗自重分配系数K2

鄂板 0.45 上承梁 0.21 下承梁 0.18 撑杆 0.16 K2 通过上表可知:颚板自重:Gd1=0.45×6.816=3.0672 t 上承梁自重:Gd2=0.21×6.816=1.4314 t 下承梁自重:Gd3=0.18×6.816=1.2269 t 撑杆自重:Gd4=0.16×6.816=1.0906 t

2.4 颚板宽度

近年来,抓斗的颚板宽度有增大的倾向,这样可相应增大抓斗张开后的覆盖面积。 颚板宽度B可由下式计算:

B?K3·3Vd (2.3) 式中:Vd——抓斗体积(m3),Vd的计算公式为式2.4:

Vd=Gt/? (2.4) 式中:Gt——抓斗的抓取量(t); ?——散料容重(t/m3);

K3——颚板宽度系数,由表3选取。

9

由开题给定的容重?=0.9-1.0 t/m3,取?=1 t/m3,则K3=1.42。

表3 抓斗自重系数K3

0.63 1.5 0.8 1.42 1.0 1.42 1.25 1.34 1.60 1.34 2.00 1.34 2.50 1.26 3.20 1.186 散料容重(t/m) 抓斗自重系数K3 3Vd= Gt/?=(Q-Gd)/?=(16-6.816)/1.0=9.184 m3

颚板宽度:

B?K3·3Vd =1.42×39.184=2.9737 m

2.5 抓斗最大开度

抓斗最大开度Lmax由下式计算:

3V Lmax?K·(2.5) d4式中:K4——抓斗最大开度系数,由表4选取。

表4 抓斗自重系数K4 散料容重(t/m) 抓斗自重系数K4 3 0.63 1.774 0.8 1.924 1.0 1.924 1.25 2.086 1.60 2.194 2.00 2.250 2.50 2.379 3.20 2.516 由开题给定的容重?=0.9-1.0 t/m3,取?=1 t/m3,则K4=1.924。

Lmax?K4·3Vd =1.924×39.184=4.029 m

2.6 抓斗的其他几何参数

按上述计算式算出颚板的宽度B和最大开度Lmax后,可导出抓斗的其他几何参数。

2.6.1 抓斗张开的覆盖面积

A=B·Lmax= K3·K4·3Vd2 (2.6) =1.42×1.924×4.3855=11.9816 m2

10

2.6.2 抓斗在抓取过程中的平均挖掘深度

H= Vd/A= Vd/( K3·K4·3Vd2) (2.7) =9.184/11.9816=0.7665 m

2.6.3 抓斗挖掘深度系数

K5=H/Lmax (2.8) =0.7665/4.029=0.190

K5也可以由表5选取。

表5 抓斗自重系数K5 散料容重(t/m) 抓斗自重系数K5 3 0.63 0.212 0.8 0.190 1.0 0.190 1.25 0.172 1.60 0.155 2.00 0.142 2.50 0.140 3.20 0.133 因此K5=0.190

2.6.4 抓斗颚板宽度B与最大开度Lmax之比

?=B/Lmax=K3/K4 (2.9) =1.42/1.924=0.7380

?也可由表6选取。

表6 系数?

散料容重(t/m) 3 0.63 0.801 0.8 0.738 1.0 0.738 1.25 0.643 1.60 0.611 2.00 0.596 2.50 0.530 3.20 0.471 ? 所以选取?=0.738。

2.7 抓斗颚板的侧面形状

抓斗颚板侧面积为:

F= Vd/2B (2.10) 式中:Vd——给定的抓斗容积(m3)。

通常用作图法确定颚板侧面积,并与上式算出的F相比,若不相等可调整l,直到与

11

F相等。见图2,图中尺寸:h=l·tan?0。

图2 颚板侧面几何形状 (a)圆底颚板;(b)平底颚板

h1=h2/3,h2=l·tan?。

?0和?的常用值见表7。

表7 ?0和?

?0 轻型抓斗 24° ~35° 30°~35° 中型抓斗 22°~26° 25°~30° 重,特重型抓斗 22°~26° 25° ? 因为是中型抓斗所以选取?0=30°,?=30°。 颚板侧形半长l可由下式计算: l=K6Vd= K6B3VdK3 (2.11)

式中:K6——颚板侧形系数,由表8选取,取为K6=0.84。

l=K6Vd= K6B3VdK3=0.84×

9.184=1.476 m

2.9737h2=l·tan?=1.476×tan30°=0.852m

h=l·tan?0=1.237×tan35°=0.8662 m

12

h1=h2/3=0.852/3=0.284 m

F= Vd/2B =9.184/(2×2.9737)=1.5442 m2

1121·l·h+·h1·(l+l)+ ·l·h 22321121 =×1.476×0.8662+×0.284×(1.476+×1.476)+ ×1.476×0.8662

2232 =0.6393+0.34932+0.6393

=1.627m

F'=

F'和F相差较小,所以适合。所以l=1.476 m,h2=0.852 m,h=0.866 m,

h1=0.284 m,F=1.5442m2。

表8 抓斗颚板侧形系数K6

散货密度(容重) 0.63 0.80 1.00 1.25 1.60 2.00 2.50 3.20 t/m3 抓斗颚板侧形系数K6 0.796 0.840 0.840 0.885 0.930 0.954 0.979 1.004 所以选取K6=0.840。

2.8 滑轮组倍率

增加滑轮组倍率可降低开闭绳在抓取过程中的张力ST,使挖掘压力增大FT,提高了抓取能力。但滑轮组倍率增加会引起开闭绳磨损加剧,也使闭合行程和闭合时间加长。因而应当综合考虑这些情况来确定滑轮组倍率。四绳抓斗的滑轮组倍率推荐值如表9。 表9 抓斗闭合滑轮组倍率 滑轮组倍率 轻型抓斗 2~3 中型抓斗 3~4 重型抓斗 5~6 特重型抓斗 6 取滑轮组倍率m=4。 2.9 抓斗的验算

2.9.1 抓取能力的验算

在抓斗的主要参数确定后,可由下式进行验算: Gt= Gd·k·e

?2S (2.12)

若验算出的抓斗填充量Gd与按抓斗自重系数K1算出的抓斗填充量存在较大差异时,

13

可适当调整抓斗几何参数,也可以对K1进行一定的修正。

经过验算相差不大,所以合格。

2.9.2 颚板强度验算

抓斗颚板是开口箱形结构,底边为刃口部分,受力大,应适当加强,颚板可以近似按均布载荷作用下的简支梁计算,见图3,刃口中部单位长度的弯曲力矩为:

MB=K0·q0·B2 (2.13) 式中:K0——系数,按颚板底板长度比A/B,由表10选取; q0——底板上的均布压力,按下式计算:

q0=K7·?·Vd/(2A·B) (2.14) =1.33×1×9.184/(2×11.9816×2.9737)

=0.1714 K7——材料分布不均匀系数,取K7=1.33。

表10 系数K0 A/B K0 A/B 0.5 0.06 1.0 0.112 0.12 0.074 1.2 0.126 0.6 0.088 1.4 0.132 0.7 0.097 2.0 0.133 0.8 0.107 ? 0.9 K0

图3 颚板强度计算简图

颚板底板的弯曲强度校核:

?=MB/W =( K0·《??? (2.15) q0·B2)/(?02/6)式中:?——底板厚度;

???——许用应力,材料Q235???=100MPa;16Mn???=140MPa。

颚板侧板厚度?1=(0.8~0.85)?0。

14

经验算符合要求。

3起升机构的设计计算

3.1 起升机构驱动装置布置方式的选择

为了操纵双绳抓斗,常采用两套独立的起升机构,见图4,其中一组驱动装置作开闭抓斗用;另一组做抓斗开闭时支持抓斗用;抓斗的升降则由两组驱动装置协同工作来完成。

起升机构的计算是在给定了设计参数,并将机构布置方案确定后运行的。通过计算,选用机构中所需要的标准部件(如电动机,减速器,制动器,联轴器,钢丝绳等),对非标准零部件根据需要做进一步的强度与刚度计算。

起升机构的载荷特点是:

(1)物品起升或下降时,在驱动中由钢丝绳拉力产生的扭矩方向不变,即扭矩是单向作用的。

(2)物品悬挂系统由绕性钢丝绳组成,物品惯性引起的附加转矩对机构影响不大,一般不超过静转矩的10%。

(3)机构起动或制动时,只有电动机出轴到制动器之间的零件承受较大的动载荷,齿轮传动和其他低速轴零件所受的动载荷不大。

1、电动机 2、卷筒 3、联轴器 4、轴 5、制动器 6、减速器 图4 起升机构方案图

图4 起升机构的驱动装置

3.2 钢丝绳与卷筒的选择

3.2.1 钢丝绳计算

采用单联滑轮组,钢丝绳的最大静拉力:

15

S=Q/(m·?z)·

1?1?2?3???1 (N) (3.1)

采用双联滑轮组,钢丝绳最大静拉力: S=Q/(2m·?z)·

?1?2?3??? (N) (3.2)

式中:Q——起升载荷,Q=Q0+q, Q0为额定起升载荷,q为取物装置的重力,当起升高度大于50m时,起升钢丝绳的重力亦应计入(N); m——滑轮组倍率;

?z——滑轮组效率(表11);

?1·?2·?3··——导向滑轮效率(表12)。

该设计抓斗起重机采用四绳双联抓斗,对于四绳双联抓斗的闭合绳和支持绳,如果机构能实现载荷平均分配,则闭合绳和支持绳的拉力各取为总载荷的66%,如果不能在抓斗起升过程中实现载荷平均分配,则闭合绳拉力取总载荷的100%,支持绳拉力取总载荷的66%。该设计机构不能实现平均分配,所以闭合绳取总载荷100%,支持绳取66%。

16×1041S=Q/(2m·?z)·×==21726.5 (N) 4?1?2?3???2×4×0.97(0.987)?1所以:S闭=S=21726.5(N), S支=66%在此处键入公式。S=14339.5(N)。

表11 滑轮组效率?

滚动轴承 滑动轴承 滑轮 效率 滑 滑 2 0.99 0.98 轮 轮 3 0.98 0.95 组 组 4 0.97 0.98 效 倍 5 0.96 0.90 率 率 6 0.95 0.88 ? m 8 0.93 0.84 10 0.92 0.80 ?z 0.98 0.96 表12 与包角?有关的导向滑轮效率值

? ? 滑动轴承 滚动轴承 15 0.985 0.99 45 0.975 0.987 90 0.96 0.985 100 0.95 0.98 d=CS (3.3)

式中:C——选择系数;因为工作级别为M5,所以C=0.100; S——钢丝绳最大工作静拉力。

所以:d闭=0.100× 21726.5=14.74 取d闭=20 mm,同理取d支=18 mm。

16

F0≥Sn (3.4) 式中:F0——所选钢丝绳的整绳破断拉力(N);

S——钢丝绳最大工作静拉力(N);

n——安全系数,由起重机设计手册表3-1-2选取,M5=5。 所以F0闭≥21726.5×5=108632.7 N,F0支≥14339.5×5=71697.5 N。

由机械设计手册查的所直径钢丝绳满足要求,选用6×19类的该直径钢丝绳,d闭=20,公称抗拉强度为1770MPa时,最小破断拉力为252kN,d支=18 mm,公称抗拉强度为1770时,最小破断拉力为204.00kN,符合要求,可以选用。

3.2.2 卷筒的尺寸计算

d (3.5) D1min=h·

式中:D1min——按钢丝绳中心计算的滑轮(或卷筒)的最小卷绕直径(mm); h——与机构工作级别和钢丝绳结构有关的系数,按表13选用;

d——钢丝绳直径(mm)。

表13 系数h 机构工作级别 卷筒 h 滑轮 h M1-M3 14 16 M4 16 18 M5 18 20 M6 20 22.4 M7 22.4 25 M8 25 28 所以:D卷=18×20=360 mm,取D卷=480 mm。 卷筒直径:

D= D卷+d=480+20=500 mm

无绳槽卷筒端部尺寸:

L1=90 mm

绳槽槽距:

p=(1.1~1.2)d=22~24 mm

取p=24 mm

固定钢丝绳所需长度:

L2=3p=3×24=72 mm

最大起升高度为Hmax=16 m。

17

滑轮组倍率a=4。

卷筒上有螺旋槽部分长:

L0=(

单层双联卷筒:

Hmaxa16?4?2)?24=49 mm +z1)p=(

3.14?500?DLs=2(L0+L1+L2)+m=2×(49+90+72)+100=522 mm

取卷筒长度L=800 mm。

L L1 L2 D 图5 卷筒示意图

卷筒壁压应力验算:

?压=Fmax/(?p)=21726.5/(14.5×24)=62.4<750 N/ mm2

所以卷筒符合要求。

卷筒转速:

n1=60mv/(?D)=60×4×0.5/(3.14×0.5)=76.43 r/min

图6 卷筒槽示意图

3.3 滑轮组的选择

滑轮的主要尺寸是滑轮直径D、轮毂宽度B和绳槽尺寸。起重机常用铸造滑轮,其尺寸已标准化(ZBJ80006.1-87)。滑轮尺寸可按钢丝绳直径进行选择。

由表13查得:滑轮h=20.

18

D1min=h·d=20×20=400 mm

取D=460mm。

铸造滑轮绳槽断面图如图7:

3.4 电动机的选择

3.4.1 静功率的就算及初选电动机

由于不同的起升机构的工作情况不同,工作的繁重程度各不相同,各种电动机的过裁能力也不全相同,故在初选电动机时可粗略的计算。

图7 铸造滑轮绳槽断面图

计算电动机的静功率如式3.6:

P?Qv/1000?(kW) (3.6) 式中:Q,v——起升载荷及起升速度;

?——机构总效率,?=?1?2?3?4,在此?1为滑轮组效率,见表11,?2为导向滑轮效率,见表12,?3为卷筒效率,?3≈?2;?4为传动效率,见表14。

表14 传动效率?常用传动类型 闭式双级圆柱齿轮传动 轴承型式 滚动 4

?4 0.94~0.96 19

闭式三级圆柱齿轮传动 开式一级圆柱齿轮传动 闭式双级圆锥齿轮运动 开式一级圆锥齿轮传动 一级行星摆线针轮传动 常用传动类型 蜗轮蜗杆传动 滚动 滚动 滑动 滚动 滑动 滚动 滑动 滚动 轴承类型 单头 双头 三头 0.92~0.94 0.92~0.94 0.90~0.92 0.88~0.92 0.85~0.90 0.90~0.92 0.88~0.90 0.85~0.90 0.70~0.75 0.75~0.80 0.80~0.85 所以电动机功率: =Qv /1000?=16×104×0.5/(1000×0.9)=88.89 kW P闭×66%=88.89×66%=58.67 kW P支=P闭

图8 电动机示意图

初选电动机开闭电动机YZR355L1,额定功率为110 kW,额定转速为582r/min,支持绳

电动机为YZR280M,额定功率为75kW,额定转速为969r/min。

20

3.4.2 电动机发热验算

电动机在工作时由于电流通过绕组而引起发热,起动时因电流较大,发热也较大,尤其是当起动时间长或频繁的起动时。更甚,电动机温升过高,会使绕组的绝缘性能降低, 严重时使电动机烧坏。故应对初选的电动机作发热验算,以控制电动机的温升,使在容许范围内。对一般线绕式电动机,按照等效功率法,求JC?25%时所需的等效功率: P'≥K25·?·P (3.7) 式中: K25——工作级别系数,查《起重机设计手册》表3-28取K25=0.75; ?——系数,查《起重机设计手册》表3-52起升机构曲线得?=0.87。

P'闭=58KW,P'支=38.28KW,

Pe闭=0.8×88.89=71.11>P'闭, Pe支=0.8×58.67=46.94>P'支

由以上计算结果,故初选电动机能满足发热条件。 3.4.3 电动机的过载能力校核

起升机构电动机过载能力按下式进行校核: P0≥

Hn?M·

Qv (3.8) 1000?式中:P0——在基准接电持续率时的电动机额定功率(kW); n——电动机转矩的允许过载倍数; ?M——电动机转矩的允许过载倍数;

H——考虑电压降及转矩允差以及静载实验超载(实验载荷为额定载荷的1.25倍)的

21

系数,绕线异步电动机取2.1;笼型异步电动机取2.2;直流电动机取1.4。

通过上式计算初选电动机符合要求。

所以选定开闭绳电动机为YZR355L1,支持绳电动机为YZR280M。

3.5 减速器的选择

3.5.1 减速器传动比

起升机构传动比i0按下式计算:

i0=n/nt (3.9) 式中:n——电动机额定转动(r/min) ; nt——卷筒转速(r/min) 。

按所采用的传动方案考虑传动比分配,选用标准减速器或进行减速器装置的设计,根据i0确定出实际传动比i。 所以:

i0闭=582/76.43=7.6 i0支=969/76.43=12.6 3.5.2 标准减速器的选用

(1)承载能力计算

起重机各机构的工作级别为M1~M8,QJ型、QJD型减速器承载能力是以M5工作级别为基准的需用输入功率PM5.查看机械设计表16-2-21~16-2-2,参照上面的传动比和轴的转速得,

当n=582r/min,i=7.6时,开闭绳减速机选用QJR400-10ⅢH型,额定功率为155KW,传动比为10,额定转速710,输入轴直径为135mm 当n=969r/min,i=12.6时,支持绳减速机选用QJR335-12.5Ⅲ H型,额定功率为98KW,传动比为12.5,额定转速950,输入轴直径为115mm.

22

3.5.3 减速器的验算

减速器输出轴通过齿轮联接盘与卷筒相联时,输出轴及其周端承受较大的短暂作用的扭矩和径向力,一般还需对此进行验算:

P=P0·n/n1 (3.11) 式中: P0——P0=1.25P

n——电动机的转速;

n1——所选减速器选择的工作状态下的转速。

=110×710/582=134.2<155KW P闭P支=75×950/969=73.5<98KW

所以初选减速器满足要求。

3.6 制动器的选择

制动器是保证起重机安全的重要部件,起升机构的每一套独立的驱动装置至少要装设

一个支持制动器。吊运液态金属及其他危险物品的起升机构,每套独立的驱动装置的驱动装置至少应有两个支持制动器。支持制动器是常闭式的,制动轮必须装在与传动机构刚性联结的轴上。起升机构制动器的制动转矩必须大于由货物产生的静转矩,在货物处于悬吊

23

状态时具有足够的安全度,制动转矩应满足下式要求:

?/(2mi) (N· Tz≥Kz·Q·D·m) (3.12)

式中:Tz——制动器制动转矩(N·m) ;

Kz——制动安全系数,与机构重要程度和机构工作级别有关,见表15; Q——额定起升载荷(N); ?——机构总效率; D——卷筒卷绕直径(m) ;

m——滑轮组倍率; i——传动机构传动比。

表15 制动安全系数

起升机构工作级别和使用场合 Kz 1.5 1.75 2 2.5 ≥1.25 1.25 ≥1.1 1.25 M1~M4起升机构和一般起升机构 M5,M6起升机构和重要齐声机构 M7起升机构 M8起升机构 在同一套驱动装置中装两个支持制动器 两套驱动装置,刚性连接,每套装置有两个支持制动器 两套以上驱动装置,刚性相联,每套装置有两个支持制动器 液压起升机构 所以Kz=1.75。 开闭绳:

Tz≥Kz·Q·D·?/(2mi)=1.75×16×104×0.5×0.9/(2×4×10)

=1575 N·m 支持绳:

Tz≥Kz·Q·D·?/(2mi)=1.75×16×104×0.5×0.9/(2×4×12.5)

=1260 N·m

根据《机械设计手册》查的标准制动器,选用ZWZA—400/400 型制动器。

24

如果起升机构中有两个制动器,其中一个是载荷自动式制动器,另一个制动器与电动机同轴(如电动葫芦),载荷自制式制动器的制动安全系数为1.1,高速轴上的制动器为1.25。在手动起升机构中,可以用自锁式传动副代替两个制动器中的一个。在液压传动的起升机构中,平衡阀(或液压锁)中的单向阀可视为第二个制动器。

推荐支持制动与控制制动并用,以减缓制动器的磨损,减轻因制动过猛产生的冲击和振动。控制制动器一般是电气式的,如再生制动,反接制动,能耗制动及涡流器制动等。控制制动仅用来消耗动能,使物品安全减速。在与控制制动并用时,支持制动器的制动安全系数应满足上述要求。

δ

图10 制动器示意图

3.7 联轴器的选择

依据所选的扭矩,转速和被联接的轴径等参数选择联轴器的具体规格,起升机构中的联轴器应满足下式要求:

T=k1·k3·T0max≤[T] (3.13) 式中: T——所传扭矩的计算值(N·m);

T0ma——按第Ⅱ类载荷计算的轴传最大扭矩,对高速轴T0max=(0.7~0.8)?MTR,在此x?M为电动机转矩允许过载倍数, TR为电动机额定转矩, TR=9550P/n(N·m),电动机额定

功率(kW),n为转速(r/min);对低速轴, T0max=?2·Tj,在此?2为起升载荷动载系数,Tj为钢丝绳最大静拉力作用在卷筒的扭矩(N·m);

[T] ——联轴器许用扭矩(N·m),由手册或产品目录中查得; k1——联轴器重要程度系数,对起升机构k1=1.8,其他见表16;

k3——角度偏差系数,选用齿轮联轴器时, k3值见表17,其他类型联轴器k3=1。

25

表16 系数k1

载荷 类型 Ⅰ Ⅱ 机 起升,变幅 1.8 1.3 表17 系数k3

轴的角度偏差 0.25 1.0 0.5 1.25 1 1.5 1.5 1.75 构 运行,回转 1.3 k3 代入数据计算结果,根据结果选取联轴器,靠电动机端轴的联轴器,选用CLZ3型半联轴器,最大容许转矩为5198.4 N·m, 飞轮力矩GD2t?0.435kg·m2,质量md?25.5kg;靠减速器的轴端联轴器,选取ZQ-650型减速器半齿联轴器,最大容许转矩?MJ??3150 N·m,飞轮矩?GD2?J?1.8 kg·m2,质量MJ?38.5 kg。

前面的计算都是考虑机构处于稳定运动状态时的精力计算。众所周知,起重机是一种间歇动作的机械,工作是周期性的。在每个工作循环中,起升机构也被断续地开动与停止,而每次开动过程中又都包括有起动(加速)、稳定运动(等速)及制动(减速)三个时期。在起动和制动时期,机构作变速运动,因而 有加速度与惯性力的作用。当起动、制动时间过长时,加速度固然很小,但这会影响起重机的生产率;而起动、制动时间过短时,加速度太大,会给金属结构和机械部分带来很大的动力载荷。因而必须把起动与制动时间控制在一定的范围内。

??

图11 联轴器示意图

3.8 起制动时间验算

机构起动时间电动机必须发出较大的力矩,即起动力矩,使原来静止的质量开始运动。这时起动力矩除了克服静阻力矩外,还有一部分力矩使运动质量加速。这部分力矩愈大,加速的时间就愈短。

26

tq??J?n9.55(Tq?Tj) (3.14)

式中:[J]----起升时换算到电动机轴上的总转动惯量 ?J??1.15(Jd?Je)?其中: Jd——电动机转子的转动惯量; Je——制动轮和联轴器的转动惯量。

11Jd?Je?[(GD2)d?(GD2)t?(GD2)J]?[2.86?0.435?1.8]?1.2744410?103?0.51452?1.515?J??1.15?1.274?40?42?142?0.917P63 Tq?1.7T额?1.7?9550??1.7?9550??1416.63n966Q?D100?103?0.5145TJ???739.81'2mi0?2?4?14?0.917tq?1.515?722?0.179.55?(1416.63?739.81)QD0240mi?2'20 (3.15)

由《起重机设计手册》表2-2-9推荐起动时间为tq?1~1.5s,故tq?tq,所以起动时间满足要求。

????3.9 制动时间验算

制动时间:制动时,制动器的制动力矩促使运动质量减速。下降制动是制动时间较长,故通常计算下降时的制动时间

tZ??J?n'''j9.55(TZ?T) (3.16)

式中: n'——满载下降时电动机转速,通常取n'?1.1n?1.1?722?794.2r/min; TZ——制动器制动转矩,由上述可知TZ?T?1000N·m。

Tj'——满载下降时制动轴静转矩,按下式计算:

Tj'?'QD010000?0.5145?0.917???622.1N·m (3.17) '2mi02?4?14?T?——下降时换算到电动机轴上的机构总转动惯量,按下式计算:

27

[J]?1.55(Jd?Je)?'QD02,? (3.18) 240m2i'010?103?0.51452 =1.55?1.274+40?42?142?0.917=1.507kg·m2 t1.507?794.2Z?9.55?(1000?622.1)?0.33s

?tZ? ——推荐制动时间,可取?tZ???tq??1~1.5s

则 tZ??tq?,所以制动时间符合要求。

28

4 总 结

经过三个多月设计,对起重机抓斗有了比较整体的认识,了解起重机抓斗和起升机构的基本组成和各部分的功用、原理。

本次设计的任务主要是对起重机起升机构设计及对抓斗的设计仿真。

设计先对抓斗进行系统的设计计算,然后根据抓斗计算出的参数和给定的参数再对起重机的起升机构进行设计,参考相关书籍,选择一个合理的布置方案。通过计算选用机构中所需的标准部件(如电动机、制动器、减速器、联轴器、钢丝绳等),对非标准零件还须作进一步的强度与风度计算校核。

为了更好的展示抓斗的工作原理和其优越的性能,本次设计采用了3DMAX对其进行动画仿真,充分展示了抓斗在抓取物料和抛洒物料的全过程。在用3DMAX仿真的时候,为了达到更好的效果,还运用到了一些艺术的手法,用Photoshop进行图片处理。在3D造型方面,由于3DS MAX 6.0对具体参数建模能力比较差,为了达到更好的效果,就必须对数据进行比例化处理,从而使得到的3D模型更趋于真实。仿真过程中,运用关键桢技术,对造好的模型进行处理,从而产生比较接近现实的仿真过程。

通过本次设计,对机械设计的过程和步骤有了一个很清晰的认识。由于时间比较仓促,仿真效果并没有达到最佳水准,但是通过设计还是了解了制作的全部过程,达到了设计的预期目的。

29

5 致 谢

首先感谢我的指导老师程贤福老师,感谢他给我无限的帮助和关心,在设计过程中给与了很多的指导,使我在设计的过程中学到到了很多的知识,并帮我指出了设计中所犯的错误,使我认识到错误的原因,在以后的工作和设计中不会再犯同样的错误;然后感谢学校给我提供良好的设计环境,让我有一个安静的设计教室,使我在教室中能安心的看书和做设计,在进入误区时能和同学一起探讨,找到正确的解决方案,学校还提供给我一个可以随时查阅资料的图书馆,在同书馆中我找到了许多设计方面的资料,给我的设计提供了很大的帮助,并且提供给我们免费的上机时间,让我们有足够的时间在机房里画图和作设计报告,感谢其它给过我帮助的老师和同学,感谢学校学院为我们做的一切,使我们能更好的完成毕业设计,并从中学到知识。

30

参 考 文 献

[1] 张质文,虞和谦等. 起重机设计手册[M]. 北京:中国铁道出版社. 1998

[2] 东北大学《机械零件设计手册》编写组. 机械零件设计手册[M]. 北京:冶金工业出版社. 1994 [3] 尹位中,王若梅,方中.实用起重手册[M].北京:水利电力出版社.1989 [4] 倪庆兴,王殿臣.起重输送机械图册[M].北京:机械工业出版社.1991

[5] ?.?. 伊万琴柯等.起重运输机械计算[M]. 北京:中国铁道出版社. 1982.7 [6] 顾迪民. 工程起重机[M]. 北京:中国建筑工业出版社. 1988

[7] 戴风光.3ds max 6三维设计教程与上机实训[M].北京:中国铁道出版社.2005 [8] 陈健.AUTOCAD与3DS MAX精彩效果图设计[M].北京:清华大学出版社.2002 [9] 濮良贵,纪名刚.机械设计[M].北京:高等教育出版社.2003 [10] 单祖辉. 材料力学[M]. 北京:高等教育出版社. 2001

[11] 洪家娣,李明,黄兴元.机械设计指导[M]. 南昌:江西高等学校出版社. 2001.12 [12] 肖文.电动液压散货抓斗计算机动态仿真[J].湖北工学院报,2002.6,17(2):27-29

31

附录A:外文资料—原文部分

Evaluating bridge and gantry cranes

Abstract (Document Summary)

Properly sized, designed, and installed bridge and gantry cranes dramatically increase production, significantly reduce material handling costs, and substantially lower the risk of employee injury. A properly maintained crane lasts at least 20 years, could reach 50 years or more, and occasionally outlives the structure or company originally housing or using the equipment. Bridge cranes are available in top running and underhung configurations, and single or double girder, to match plant structural and lifting requirements. Gantry cranes are constructed in single or double leg, single or double girder, and top running or underhung versions. Bridge cranes are usually used for high tonnages, long spans, and heavy duties. Gantry cranes are often a practical alternative to bridge cranes, and are capable of serving many of the same lifting, traveling, and duty classifications. Gantries are suitable if the plant structure cannot handle the bridge loading Full Text

Copyright Cahners Business Information, a division of Reed Elsevier, Inc. Apr 2001

Properly sized, designed, and installed bridge and gantry cranes dramatically increase production, significantly reduce material handling costs, and substantially lower the risk of employee injury. A properly maintained crane lasts at least 20 yr. could reach 50 yr or more, and occasionally outlives the structure or company originally housing or using the equipment.

These overhead workhorses maneuver large, bulky loads through the plant for shipping and receiving, relocating and staging, or integrating with heavy-duty manufacturing operations.

Computers and other control packages near the equipment or at a remote location allow the crane to closely match almost any size and type of load, where and when needed, and under all operational and environmental conditions.

Hoisting speeds over 200 fpm, bridge speeds to 1000 fpm, and capacities over 1000 tons are available, although slower movements and smaller loads are the norm. Cranes are 15-30-ft overhead, but could be up to 200 ft to clear floor-mounted equipment, to place material where needed in the manufacturing operation, or for safety reasons. A variety of mechanisms, such as hooks, magnets, or buckets, are available on the hoist to match particular grabbing or lifting requirements. Types

Bridge cranes are available in top running and underhung configurations, and single or double girder, to match plant structural and lifting requirements. Gantry cranes are constructed in single or double leg, single or double girder, and top running or underhung versions.

32

Bridge cranes are usually used for high tonnages, long spans, and heavy duties. Although available in several forms, each crane design contains several pieces of common equipment. * Hoists are used to lift and lower the load.

* Trolleys consist of a frame, end trucks or wheels with side frames, and drive. They suspend or support the hoist, rope, and load block; and travel on one or more bridge rails or beams. * Girders are the principal horizontal structural steel beams holding the hoist and trolley. They are supported by end trucks and are perpendicular to the runway. Very wide or large capacity cranes require two or more girders.

* Runways consist of structural steel rails, girders, brackets, and framework. They support and allow movement of the crane through the plant.

* End trucks are an assembly of structural members, wheels, bearings, and axles that support the girders or trolley cross members.

* Bridges consist of girders, end trucks, walkways, cross bridge electrification controls, and drive mechanisms. They carry the trolley and travel along the runway rails.

Gantry cranes are often a practical alternative to bridge cranes, and are capable of serving many of the same lifting, traveling, and duty classifications. This floor-mounted equipment essentially \legs.

Gantries are suitable if the plant structure cannot handle the bridge loading, if the installation is temporary and may require relocation at a later date, or overhead runways are long, costly to erect, and difficult to maintain in alignment. The gantry is common in situations where the crane itself does little or no traveling, and material transfer is handled almost exclusively by the trolley. Top-running double girder

Top-running, double-girder cranes provide the greatest lifting capacities, highest tonnages, widest spans, and heaviest duties. Top-running single girder

Top-running, single-girder cranes have a one-beam bridge that rides on a rail atop the runway and handle loads up to 30 tons with spans up to 60 ft. Double-girder underhung

Double-girder underhung cranes have the hoist mounted above the bridge to attain a bit more headroom and reach capacities up to 50 tons. Single-girder underhung

Single-girder underhung cranes have the bridge end trucks running on the lower flanges of the runway beams and are usually limited to 10 tons. Double-leg gantry

Double-leg gantry cranes move along floor rails or guidepaths with a capacity typically less than

33

30 tons, although units reaching several hundred tons are in service. Single-leg gantry

Single-leg gantry cranes substitute a wall-mounted runway for the second leg and are usually designed to handle loads of less than 20 tons for a specific operation.

Single and double-leg, single-girder cranes typically handle less than 20 tons, although models that accommodate up to about 60 tons are available with special construction features. The two double-girder types usually have capacities less than 30 tons, but again, exceptions exist and some versions moving several hundred tons are in service.

For more information on cranes, visit the \[Sidebar] Safety first [Sidebar]

Safe crane operation is an issue of paramount importance. Components such as redundant brake concepts for hoists, more reliable controls, and economical overload detection systems are engineered into the cranes to help in the safety process.

Even with this equipment available, safety starts with the operator. Whenever there is doubt as to safety, the operator should stop the crane, report the problem to a supervisor, and not operate the equipment until satisfied it is safe to do so, or is directed to proceed by a supervisor.

Operators should be familiar with the principal parts of the crane. Employees should receive hands-- on training, read all instruction materials, and have a thorough knowledge of crane control functions and movements. The operator should test all crane controls at the beginning of each shift, and should perform a walk-around check to look for loose or damaged parts before commencing work.

There is a variety of other safety factors to consider.

* When the load approaches the rated capacity, the operator should test the hoisting brakes by raising the load a few inches and applying the brakes.

* The load should not be lowered below the point where less than two full wraps of wire rope remain on the hoist drum. [Sidebar]

* The operator should land any attached load and place the controllers in the \leaving a crane unattended.

* Loads should never be carried over workers' heads. * Cranes should never be used for side pulling.

* Hand signals between the operator and hooker should be clearly agreed upon and understood before moving a load.

* The operator should never lift two separately rigged loads at the same time.

* The operator should approach the desired position as far as possible at the main speed and use creeping for final positioning. Ropes,pulleys and drums Steel Wire Ropes

Steel wire ropes are used as flexible appliances to lift loads and transmit motion and forces. Such ropes are wound from steel wire from 0.5 mm to 2 mm in diameter and have an ultimate strength of 1400—2000N/mm2.Steel wire ropes are available in a great variety of

designs. Machines used in amterials handling, construction and road making are provided mostly

34

with round double lay (cross or regular lay)ropes from 11mm to 32 mm in dismeter.

Double lay ropes are manufactured from preliminarily twisted spiral wire strands.In a

parallel (Long)lay rope the direction of twist of the direction of twist of the wires in the strand is the same as that of the atrands in the rope, while regular lay ropes are so constructed that the direction of twist of the wires in the strand is opposite to that of the strands in the rope.

To make the ropes more flexible and provde proper lubrication of wires the strands are laid on a hemp core impregnated with oil.

Special locked-coil steel wire ropes find application in cable cranes and cable ways . These ropes ,used to carry trolleys, have the cross section. The outer specially shaped wires form a smooth surface. These ropes have a low flexibility and high resistance to wear and keep out moisture.

According to the regulations of State Technical Inspector,ropes are selected from the formula

Q=S/n

Where: s:breaking load on the rope as a whole;

Q:safe load on the rope; n:rope safety factor.

lleys and Drums

Ropes are supported and guided by means of cast iron pulleys. The groove on the pulley rim is shaped so as not to pinch the rope.

The nominal diameter of the pulley D is the diameter of the circle described by the exis of the rope. The pulley diameter appreciably affects the magnitude of the bending stresses and the rope servive life and for this reason the existing norms should be taken into account in selecting a pulley diameter.

During lifting or other displacement of the load the rope may be wound around drums in the form of cylinders with a smooth or grooved surface.

A rope resting in a groove ensures, besides the proper direction , a smaller pressure on separate wires in the rop which increase the rop service life.

The rope capacity of a drum with a single-layer winding can be found from the formula

L1=?(D+d)zt

Where D:drum diameter;

d:rope diameter;

z:number of working turns on the drum surface; t:groove pitch.

Pulleys and drumsmay rotate in bronze bushes or in antifriction bearings. They may also revolve together with their axles, the hubs being fixed to the axles.

Brakes

One of the most important components of crane is the brake on the hoisting motion. Electric cranes are invariably fitted with an automatic electric-mechanical brake actuated by solenoid or on alternating current by a thrustor which applies itself immediately current is cut off from the motor. Centrifugal brakes are occasionally fitted to prevent excessive acceleration when lowering, but it is preferable to use some system of electric braking such as dynamic with

potentiometer control on direct current, and one of the systems of creating an opposing torque

35

本文来源:https://www.bwwdw.com/article/1y7a.html

Top