爬行机器人的设计

更新时间:2024-04-25 15:14:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

本科毕业设计(论文)通过答辩

油管内壁爬行机器人的设计

本科毕业设计(论文)通过答辩

前言

随着现代科学技术的发展,管道运输作为一种高效、安全、可靠的手段应用日益广泛,城市中的地下排水系统、取暖系统、煤气系统、自来水系统等都应用了各种管道;另外,在现代工农业、石油、化学、核工业等领域也大量使用了管道。经过长期使用,它们会出现裂纹、腐蚀、堵塞等故障。有的管道中输送的是剧毒或放射性介质,若这些管道产生裂纹、漏孔会造成介质泄漏,引起事故甚至发生灾难。为了防患于未然,必须对这些管道进行定期检测和维修。但是它们有的埋在地下,甚至埋在海底,有的口径很小,人无法进入。挖出管道进行检测、维修既不经济又不现实,由此可见,管道机器人有着广阔的市场。

我国早在1987年就开展了管内机器人的研究,并试制了几种模型,但总体水平较国外差。管内机器人研究是机电一体化的高科技研究项目。在石油、化工、核工业、给排水等许多管道工程中,都需要进行管内检测、喷涂及加工等工作,管内机器人在完成这些工作中会发挥重要作用,因此,开发研究管内机器人意义很大[1]。

本次题目的内容就是设计一种可在油管内壁爬行,并且搭载工作体的部分可协助工作体完成相应作业的机器人。采用机械结构和电气控制来达到设计目的。要实现的理想过程是:人对主机输入一个控制信号,可以通过单片机对电机、电磁铁进行电气控制,从而使机器人能够按照所搭载工作体的要求进行移动,并在工作体的工作位置做出相应的辅助动作。机器人在行进过程中可在任意位置停止前进,并可以在该位置开始作业,工作体可在步进电机驱动下完成小于360度的任意角度的旋转。

本科毕业设计(论文)通过答辩

目录

前言 ....................................................................... 1 1 方案的结构选择 ........................................................... 1 1.1 总体选择 ............................................................ 1 1.2 前进方案的选择 ...................................................... 1 1.3 卡紧方案的选择 ...................................................... 1 1.4 旋转方案的选择 ...................................................... 4 1.5 调节方案的选择 ...................................................... 4 1.6 结构方案改进 ........................................................ 6 2 主要部件的计算选择 ....................................................... 7 2.1 步进电机的选择 ...................................................... 7 2.2 推拉式电磁铁的选择 .................................................. 9 3 关键件的校核 ........................................................... 11 3.1 丝杠的校核 ........................................................ 11 3.2 轴承的校核 ........................................................ 11 3.3 键的校核 .......................................................... 11 4 驱动系统设计 ........................................................... 12 5 机器人工作过程 ......................................................... 14 6 控制系统的设计 ......................................................... 15 6.1 电磁铁及步进电机的控制 ............................................ 15 6.2 控制系统的硬件设计 ................................................ 15 7 结论 ................................................................... 22 参考文献 ................................................................. 23 附录A ................................................................... 24 附录B ................................................................... 28

本科毕业设计(论文)通过答辩

1 方案的结构选择

1.1 总体选择

总体上,本次设计主要采用机械结构设计来完成指定的动作,而用电气设计来控制这些动作。

1.2 前进方案的选择

目前在管道内机器人的行进方式多种多样,本设计采用蠕动式行进的方式。前进方案由旋转式步进电机、直线式步进电机、气缸中进行选择。现将3种方式在本设计中的应用进行比较。由于本设计前进方式为直线,所以其中使用直线式电机最为简便,直线电机的电机轴是丝杠形式的,于是可以通过丝杠的导程来计算机器人的行进距离。

使用旋转式步进电机的原理与直线式步进电机相似,可通过一个小型连轴器与丝杠相连组成一个直线式步进电机,也可以通过一组齿轮减速器将丝杠与电机轴相连,简图见图1-1。

图1-1 结构简图

第三种方法是使用气缸推动机器人前进。综合比较三种方法后发现,气缸实现直线运动过程简单,但其行程不易控制,要实现精确控制需要成本过高。两种步进电机的特点相似,但直线式的步进电机在安装时不易对心,且价格远高于旋转式步进电机。所以综合考虑最终选择采用旋转电机的方案。

1.3 卡紧方案的选择

机器人在蠕动式爬行的时候,需要卡紧装置进行配合。所以需要选择合理的卡紧方案。

本科毕业设计(论文)通过答辩

由于本次设计的机器人需要适应从4.5到7英寸的不同管径的管道,这给卡紧方案的设计带来很大的难度。

方案1为采用推拉式电磁铁直接进行卡紧,并使用适当的连杆机构调整电磁铁位置,当连杆机构将电磁铁调整到指定位置后,电磁铁得电,推杆伸长,机器人卡紧管壁。工作完成后,电磁铁失电,机器人放松[6]。结构简图见图1-2

图1-2 结构简图

方案2为使用一个旋转电磁铁,用旋转电磁铁来带动凸轮实现卡紧,通过对凸轮进行设计可以计算出支撑杆的移动距离。当旋转电磁铁得电后,旋转一定角度,带动凸轮旋转,使支撑杆在径向产生移动从而卡进管壁。电磁铁失电后,通过弹簧的作用使凸轮和支撑足复位,机器人放松。结构简图见图1-3。

本科毕业设计(论文)通过答辩

图1-3 结构简图

Diagram 1-3 structure sketch plans

方案3为使用一推拉式电磁铁推动锥形滑块,同时设计三个长度可调的支撑杆,当电磁铁得电后,电磁铁推杆伸出并带动锥形滑块沿轴向前进。由于滑块为锥形,支撑足产生径向移动,机器人被卡紧[7]。电磁铁失电后,机器人放松,原理同方案2。结构简图见图1-4。

图1-4 结构简图

Diagram 1-4 structure sketch plans

综合比较以上三种方案,首先放弃了方案1,由于管道内空间有限,电磁铁的体积太大,无法合理的安放电磁铁,并且电磁铁的重量也相对较大,设计与之相应的连杆机构也很困难。方案2与方案3在原理上基本相同,不同之处在于方案2用的是凸轮,而方案3用的是锥形滑块。凸轮的结构复杂,且其表面需要非常光滑,由于凸轮曲面为复杂曲面,所以普通磨床难以加工,需用数控加工中心进行加工,这样加大了成本。经过综合比较决

本科毕业设计(论文)通过答辩

定选择方案3。

另外,在卡紧方面也可使用气缸,此类型的设备已被开发,但由于空间问题并不适合于本设计,故本设计不使用该方法。

1.4 旋转方案的选择

旋转部分采用一个旋转式步进电机,电机轴带动法兰,可在法兰上连接工作体,通过控制步进电机的转动角度来控制工作体的转动。结构如图1-5所示。

图1-5 Diagram 1-5

1.5 调节方案的选择

由于本次设计的机器人要适应不同的管径,所以需要设计一个结构合理的可调机构。 初步拟订3个方案,方案1采用一个推拉式电磁铁推动一个连杆机构,结构与卡紧方案1相似,结构简图见图1-2。通过控制推杆伸出的长度及连杆机构来调整支撑足。

方案2也是一种连杆机构,结构见图1-6。通过调整螺栓来调整支撑足的高度。它的结构与汽车修理厂所用千斤顶相似。

本文来源:https://www.bwwdw.com/article/5b7p.html

Top