Green&39;s and spectral functions of the small Frolich polaron

更新时间:2023-05-28 04:35:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

Green’sandspectralfunctionsofthesmallFr¨ohlichpolaron

A.S.AlexandrovandC.Sricheewin

DepartmentofPhysics,LoughboroughUniversity,LoughboroughLE113TU,U.K.

arXiv:cond-mat/9911376v2 [cond-mat.supr-con] 26 Nov 1999AccordingtorecentQuantumMonteCarlosimulationsthesmallpolarontheoryispracticallyexactinawiderangeofthelong-range(Fr¨ohlich)electron-phononcouplingandadi-abaticratio.WeapplytheLang-Firsovtransformationtoconvertthestrong-couplingtermintheHamiltonianintotheformofane ectivehoppingintegralandderivethesingle-particleGreen’sfunctiondescribingpropagationofthesmallFr¨ohlichpolaron.Oneandtwodimensionalspectralfunc-tionsarestudiedbyexpandingtheGreen’sfunctionpertur-batively.Numericalcalculationsofthespectralfunctionsareproduced.Remarkably,thecoherentspectralweight(Z)ande ectivemass(Z′)renormalisationexponentsarefoundtobedi erentwithZ′>>Z,whichcanexplainasmallcoherentspectralweightandarelativelymoderatemassenhancementinoxides.PACSnumbers:74.20.Mn,74.20.-z,74.25.Jb1.IntroductionTheproblemofafermiononalatticecoupledwiththebosonic eldoflatticevibrationshasanexactsolutionintermsofthecoherent(Glauber)statesintheextremestrong-couplinglimit,λ=∞foranytypeofelectron-phononinteractionconservingtheon-siteoccupationnumbersoffermions1,2.Fortheintermediatecouplingthe1/λperturbationtechniquehasdevelopedbothforasingle3andsystems4.Theexpansionparameteractuallyis1/2zλ23,5,6,4,sotheanalyticalperturbationtheorymighthaveawiderregionofapplicabilitythanonecanexpectfromanaivevari-ationalestimate(zisthelatticecoordinationnumber).However,itisnotclearhowfasttheexpansionconverges.Theexactnumericalofvibratingclus-ters,variationalcalculations717dynamicalmean- eldapproachin18,andQuantum-Monte-Carlosimulations19–22revealedthatthegroundstateen-ergy(thepolaronbindingenergyEp)isnotverysensitivetotheparameters.Onthecontrary,thee ectivemass,thebandwidthandtheshapeofpolarondensityofstatesstronglydependonpolaronsizeandadiabaticratioincaseofashort-range(Holstein)interaction.Inparticu-lar,numericaldiagonalisationofthetwo-site-one-electron

Holsteinmodelintheadiabaticω0/t<1aswellasinthe

nonadiabaticω0/t>1regimesshowsthatperturbation

theoryisalmostexactinthenonadiabaticregimefor

allvaluesofthecouplingconstant.However,thereisno

agreementintheadiabaticregion,wherethe rstorder

perturbationexpressionoverestimatesthepolaronmass

byafewordersofmagnitudeintheintermediatecoupling

regime8.Hereω0isthecharacteristicphononfrequency

andtisthenearest-neighbourhoppingintegralsothat

1thedimensionlesscouplingconstantisλ=Ep/(zt).Amuchlowere ectivemassoftheadiabaticsmallpolaronintheintermediatecouplingregimecomparedwiththatestimatedby rstorderperturbationtheoryisaresultofpoorconvergenceoftheperturbationexpansiontotheappearanceofthefamiliardouble-wellpotential23intheadiabaticlimit.Thetunnellingprobabilityisex-tremelysensitivetotheshapethispotential.Ithasalsobeenunderstood21therangeofappli-cabilityoftheanalyticaltheory3,4stronglydependsontheradiusofinteraction.Whiletheanalyticalapproachisapplicableonlyifω0≥tforshort-rangeinteraction,thetheoryappearsalmostexactinasubstantiallywiderregionoftheparametersforalong-range(Fr¨ohlich)in-teraction.Theexacte ectivemassofbothsmallandlargeFr¨ohlichpolarons,calculatedwiththecontinuous-timepath-integralQuantumMonteCarlo(QMC)algo-rithm,m (λ)iswell ttedbyasingleexponent,22.Asanexample,e0.73λforω0=tande1.4λforω0=0.5tdescribem (λ)inaone-dimensionallattice.Thenumer-icalexponentsareremarkablyclosetothoseobtainedfromtheLang-Firsovtransformation,e0.78λande1.56λ,respectively.Hence,inthecaseoftheFr¨ohlichinterac-tionthetransformationisperfectlyaccuratealreadyinthe rstorderof1/λexpansionevenintheadiabaticregime,ω0/t≤1foranycouplingstrength.Inthispaperweusethisresulttocalculatethesingle-particleGreen’sfunctionofafermiononalatticecoupledwiththebosonic eldviathelong-rangeFr¨ohlichinter-action.2.Green’sfunctionsofthesmallFr¨ohlichpolaronTheclassicalapproachtothesmallpolaronproblemisbasedonthecanonicaldisplacement(Lang-Firsov)trans-formationoftheelectron-phononHamiltonian3allowingforthesummationofalldiagramsincludingthevertexcorrections, ωqn i[ui(q)dq+H.c.]c+t(m n)δs,s′c H=ij+i,j qq,iωq(d qdq+1/2)(1)withthebarehoppingintegralt(m)andthematrixele-mentoftheelectron-phononinteractionui(q)=1γ(q)eiq·m.2N(2)Herei=(m,s),j=(n,s′),includesitemandspins,n i=c ici,andci,dqareelectron(hole)andphononoperators,respectively.

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

ThecanonicaltransformationeSdiagonalisingtheHamiltonianintheλ=∞limitis

H =eSHe S,(3)

where

S= n i[ui(q)dq

q,i H.c.].(4)

Theelectronoperatortransformsas

c i=ciexp ui(q)dq H.c. (5)

q

andthephonononeas:

d q=dq+ n iu i(q)(6)

i

ItfollowsfromEq.(6)thattheLang-Firsovtransforma-tionshiftsionstonewequilibriumpositions.Inamoregeneralsenseitchangesthebosonvacuum.Asaresult,

H = σ ijc

icj Ep

i,j n ii

+ ωq(d qdq+1/2)+1

q

2N q|γ(q)|2ωq(9)

thepolaronlevelshift(bindingenergy),and

vij= 1 mt(m)exp( ik·m)(14)withg2(m)= q|γ(q)|2[1 cos(q·a)].(15)Quitegenerallyone ndsZ′=exp( γEp/ω),wherethenumericalcoe cientγ= |γ(q)|2[1 cos(q·a)]/ |γ(q)|2,(16)qqmightbeassmallas0.421andevensmallerinthecuprateswithnearestneighbouroxygen-oxygendistancelessthanthelatticeconstant,γ 0.225,26.ApplyingtheLang-FirsovcanonicaltransformationtheFouriercomponentoftheretardedGF, ∞GR(k,ω)= ie i(k·m ωt) 0|c0(t)c m(0)|0 dtm0(17)isexpressedasaconvolutionoftheFouriercomponentsofthecoherentretardedpolaronGF,Gp(n,t),andthe

multiphononcorrelationfunctionσ(n,t):

GR(k,ω)=1

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

withXm=exp

stateofH .

Straightforward qui(q)dq H.c. ,and| 0 thegroundcalculations1,2yield

G1p(m,ω)=ω ξ(k′)+iδ,(21)and

σ(m,ω)=iZ1

l=0

|γ(q)|2exp(iq·m).(22)

q l2N

Here

Z=exp( q|γ(q)|2).(23)

Inthefollowingweconsiderdispersionlessphonons,ωq=ω0,andtheFr¨ohlichinteractionwithγ(q)~1/q.TheconvolutionofEq.(19)andEq.(20)yields

GR(k,ω)= ∞

G(l)

R(k,ω),(24)

l=0

where

G(l)

R (k,ω)=

|γ(q1)|2×|γ(q2)|2×...×|γ(ql)|2

Z

q1,...ql

ω ξ(k)+iδ.(26)

Thespectralweightofthecoherentpartisstrongly(ex-ponentially)suppressedasZ=exp( Ep/ω0)whilethee ective′massmightonlybeslightlyenhanced,ξk=ZEk µ,becauseZ<<Z′<1inthecaseoftheFr¨ohlichinteraction.

Thesecondincoherentphonon-assistedcontributionwithl≥1describestheexcitationsaccompaniedbyemissionofphonons.Webelievethatthistermisrespon-sibleforthebackgroundinopticalconductivityandinphotoemissionspectraofcupratesandmanganites.Wenoticethatitsspectraldensityspreadsoverawideen-ergyrangeofabouttwicethepolaronlevelshiftEp.Onthecontrarythecoherenttermshowsanangulardepen-denceintheenergy′windowoftheorderofthepolaronbandwidth,2Zzt.Interestingly,thereissomekdepen-denceoftheincoherentbackgroundaswell,ifthema-trixelementofelectron-phononinteractiondependsonq(seealsoRef.28).Toillustratethispointwecalculatethesingle-phononcontribution(l=1)tothespectralfunctionA(k,ω)≡ (1/π) GR(k,ω)= ∞A(l)(k,ω).(27)l=0Thecoherentpart(l=0)ofthespectralfunctionisaδ-functioninagreementwiththewell-establishedfact(see2,1andreferencestherein)thatsmallpolaronsex-istintheBlochstatesatzerotemperaturenomatterwhichvaluestheparametersofthesystemtake.Thesingle-phononcontributiontotheincoherentbackgroundisgivenbyA(1)(k,ω)~ dqq 2δ(ω ω0BZ ξ(k+q),(28)wheretheintervalofintegration(theBrillouinzone,BZ)isdeterminedbylatticeconstantsa,b,c.Wethisintegralforone-dimensional(1D),ξ(k)= calculateand 2tcos(kxa)2 t′two-dimensional(2D),ξ(k)=2tcos(kxa)+cos(kyb)polaronbandsinthetight-bindingapprox-imationwiththepingintegrals, (renormalised)nearestneighbourhop-t=Z′t,t ′=Z′t′.The1Dsingle-phononspectralfunctionisreducedtoA(1)(k,ω)~(1 ω 2) 1/2 π/3dz[f(z,ω,kx)+f(z,ω, kx)],(29)0wheref(z,ω,kx)=[z2+(kx cos 1ω )2] 1/2tan 1(π[z2+(kx cos 1ω )2] 1/2).(30)Hereandfurtherwetakea=b=1andc=3,t and′=t/4.ItsspectralandangulardependenceareshowninFig.1.Apartfromtwonondispersivesingularities(vHs)atω ≡(ω ω0)/2 1Dvan-Hovet=±1thereisaninterestingdispersivepeakatω =coskx,whichisdueentirelytothelong-rangecharacteroftheFr¨ohlichinteraction.Indeed,approximatingtheBrillouinzonebyacylinderalongx,onereadelyobtainsalogarithmicsingularityinthespectralfunction,A(1)(k,ω)~(1 ω 2) 1/2ln (kx cos 1ω )2+q2D

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

HereqDistheradiusofthecylinder.Forω=ω0+2tcoskx,thex-componentofthephononmomentumiszero,andthesingularmatrixelementsquared(~1/q2)integratedoverqyandqzyieldsasingularity.

The’long-range’dispersivefeaturesappearinthe2Dsingle-phononspectralfuctionaswell.Thisfunctionisreducedto

A(1)(k,ω)~ b(ω)

dz[1 ( ω 1

a(ω)

3[(x kx)2+(z ky)2] 1/2

andx=cos 1( ω 1 (33)

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

34

A.S. Alexandrov and C.J. Dent, Phys. Rev. B 60, (1999).

G.D. Mahan, Many Particle Physics, Plenum Press, (1990). 2 A.S. Alexandrov and N.F. Mott, Polarons and Bipolarons, World Scienti c, Singapore (1995). 3 I.G. Lang and Yu.A. Firsov, Zh.Eksp.Teor.Fiz. 43, 1843 (1962) ( Sov.Phys.JETP 16, 1301 (1963)). 4 A.S. Alexandrov, in Models and Phenomenology for Conventional and High-temperature Superconductivity (Course CXXXVI of the Intenational School of Physics‘Enrico Fermi’, Varenna, 1997), eds. G. Iadonisi, J.R. Schrie er and M.L. Chiofalo, IOS Press (Amsterdam), p. 309 (1998). 5 D.M. Eagles, Phys. Rev. 181, 1278 (1969). 6 A.A. Gogolin, Phys.Status Solidi B109, 95 (1982). 7 A. Kongeter and M. Wagner, J. Chem. Phys. 92, 4003 (1990). 8 A.S. Alexandrov, V.V. Kabanov and D.K. Ray, Phys.Rev. B49, 9915 (1994). 9 A.R. Bishop and M. Salkola, in:‘Polarons and Bipolarons in High-Tc Superconductors and Related Materials’, eds E.K.H. Salje, A.S. Alexandrov and W.Y. Liang, Cambridge University Press, Cambridge, 353 (1995). 10 H. Fehske et al, Phys. Rev. B51, 16582 (1995). 11 F. Marsiglio, Physica C 244, 21 (1995). 12 H. Fehske, J. Loos, and G. Wellein, Z. Phys. B104, 619 (1997). 13 A.H. Romero, D.W. Brown and K. Lindenberg, Phys. Rev. B 60, 4618 (1999). 14 A. La Magna and R. Pucci, Phys. Rev. B 53, 8449 (1996). 15 E. Jackelmann and S.R. White, Phys. Rev. B 57, 6376 (1998). 16 J. Bonca, S.A. Trugman and I. Batistic, Phys. Rev. B 60, 1633 (1999). 17 T. Frank and M. Wagner, Phys. Rev. B 60, 3252 (1999). 18 P. Benedetti and R. Zeyher, Phys. Rev. B58, 14320 (1998). 19 H. deRaedt and Ad. Lagendijk, Phys. Rev. B27, 6097 (1983). 20 P.E. Kornilovitch and E.R. Pike, Phys. Rev. B55, R8635 (1997). 21 A.S. Alexandrov and P.E. Kornilovitch, Phys. Rev. Lett. 82, 807 (1999). 22 P.E. Kornilovitch, Phys. Rev. B, v.59, 13531 (1999). 23 T. Holstein, Ann.Phys. 8, 343 (1959). 24 Higher order corrections in 1/λ, which do not depend on k are also included inµ. 25 A.S. Alexandrov, Phys. Rev. B53, 2863 (1996). 26 A.S. Alexandrov, Phys. Rev. Lett. 82, 2620 (1999). 27 Eq.(22) can be also derived from the polaronic Matsubara GF4 . 28 G.J. Kaye, Phys. Rev. B 57, 8759 (1998). 29 Y. Okimoto et al., Phys. Rev. Lett. 75, 109 (1995); Y. Okimoto et al., Phys. Rev. B 55, 4206 (1997). 30 D.S. Dessau et al, Phys. Rev. Lett. 81, 192 (1998). 31 K. Gofron et al, Phys. Rev. Lett. 73, 3302 (1994). 32 M. C. Schabel et al, Phys. Rev. B 57, 6090 (1998). 33 A.S. Alexandrov, Physica C (Amsterdam) 305, 46 (1998).

1

Figure Captures Fig.1. 1D single-phonon contribution to the polaron spectral function. Fig.2. 2D single-phonon contribution to the polaron spectral function along theΓ Y direction.

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

Relative Energy

According to recent Quantum Monte Carlo simulations the small polaron theory is practically exact in a wide range of the long-range (Frohlich) electron-phonon coupling and adiabatic ratio. We apply the Lang-Firsov transformation to convert the strong-coupl

Relative Energy

本文来源:https://www.bwwdw.com/article/9y84.html

Top