《复变函数与积分变换(刘建亚)》作业答案

更新时间:2024-04-21 09:06:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《复变函数与积分变换》作业参考答案

习题1:

4、计算下列各式

(1) 3i(3?i)(1+3i); (3)

3; 2(3?i)6(5) z?1?3i234,求z,z,z; (7) 2?1。

解:(1) 3i(3?i)(1+3i)=3i(3+3i?i+3)=3i(2i+23)=?6+63i;

(3)

333(2?23i)3(2?23i)333?????i; 24?1288(3?i)2?23i(2?23i)(2?23i)(5) z2?1?3i?3i?3?2?23i13????i,

4422?1?3i1?3i?1?3????1, 224z3?z2?z?13z4?z3?z???i.

22(7) 因为?1?cos??isin?,所以

6?1?cos??2k?6?isin??2k?6,

k?0时,w0?cosk?1时,w1?cos?6?isin?6?31?i; 223?3??isin?i; 66k?2时,w2?cos5?5?31?isin???i; 66227?7?31?isin???i; 66229?9??isin??i; 66k?3时,w3?cosk?4时,w4?cosk?5时,w5?cos

11?11?31?isin??i. 6622习题2:

3、下列函数在何处可导?何处解析?在可导点求出其导数.

(2) f(z)?x2?iy; (4) f(z)?sinxchy?icosxshy (6) f(z)?az?b。 cz?d解:(2) 因为u(x,y)?x2,v(x,y)??y,

???u?x?2x,uy?0,vx?0,vy??1.

这四个一阶偏导数都连续,故u(x,y)和v(x,y)处处可微,但柯西-黎曼方程仅在x??成立,所以f(z)只在直线x??处不解析.

(4) 因为u(x,y)?sinxchy,v(x,y)?cosxshy,

1上21上可导,此时f?(z)x??1?2xx??1??1,但复平面上处222???u?x?cosxchy,uy?sinxshy,vx??sinxshy,vy?cosxchy.

这四个一阶偏导数都连续,故u(x,y)和v(x,y)处处可微,且满足柯西-黎曼方程,所以f(z)在复平面内解析,并且

ey?e?yey?e?y?f?(z)?u??isinx?x?ivx?cosxchy?isinxshy?cosx?22eye?yey?ixe?yix??cosx?isinx??. ?cosx?isinx???e??e2222ey?ix?e?y?ixe?iz?eiz???cosz22 (6)

?z?0limf(z??z)?f(z)1?a(z??z)?baz?b??lim??z?0?z?c(z??z)?d?zcz?d????limad?bcad?bc??z?0(cz?c?z?d)(cz?d)(cz?d)2ad?bcd外处处解析,且f?(z)?. 2c(cz?d)

所以,f(z)在除z??

4、指出下列函数的奇点. (1)

z?1z?2; (2) . 2222z(z?4)(z?1)(z?1)解:(1)

z2(z2?4)?(z?1)(4z3?8z)?3z4?4z3?4z2?8zf?(z)??422z(z?4)z4(z2?4)2??3z?4z?4z?8z3(z2?4)232

所以,f(z)的奇点为0,?2i.

(z?1)2(z2?1)?2(z?2)(z?1)(2z2?z?1)3z3?9z2?5z?3(2) f?(z)? ??422322(z?1)(z?1)(z?1)(z?1)所以,f(z)的奇点为?1,?i.

10、如果f(z)?u?iv在区域D内解析,并且满足下列条件之一,试证f(z)在D内是一常数.

(2) f(z)在D内解析;

?证明:由f(z)?u?iv在区域D内解析,知u(x,y)、v(x,y)在区域D内可微,且u?x?vy,????D内解析,知u?u?y??vx.同理,由f(z)在x??vy,uy?vx.

???D内是一从而我们得到u?x?vy?uy?vx?0,所以u(x,y)、v(x,y)皆为常数,故f(z)在

常数.

15、求解下列方程:

z(2) e?1?0

z解:e??1,于是

z?Ln(?1)?ln1?iarg(?1)?2k?i=(2k?1)?i,k?Z

18、求Ln(?i),Ln(?3?4i)的值及主值. 解:Ln(?i)?ln?i?iarg(?i)?2k?i???2i?2k?i,所以其主值为??2i;

4Ln(?3?4i)?ln?3?4i?iarg(?3?4i)?2k?i?ln5?i(??arctan)?2k?i,所以其主

3值为ln5?i(??arctan 19、求e解:e

1?i1?i

4). 3?2

,e

1?i?4

,3i,(1?i)i的值.

?2?e?ei(?)2??????e?cos(?)?isin(?)???ie;

22??e1?i?4?e?e14i?4?2???2?24??e?cos?isin??4e??i?e?1?i?; ???44222????143i?eiLn3?ei(ln3?2k?i)?e?2k?+iln3?e?2k??cosln3?isinln3?; (1?i)i?eiln(1?i)?e

20、求1,(?2)解:122???i?ln2?i?2k?i?4???e1????2k????iln24???e1????2k???4??ln2ln2??cos?isin??.

22??2,1,i,(3?4i)1?i的值.

2k?i?ii?e2Ln1?e2?e?cos(22k?)?isin(22k?);

?22(?2)2?e2Ln(?2)2ln2?(2k?1)2?i?cos??(2k?1)??2????isin?(2k?1)2??;

?1?i?e?iLn1?e?i(2k?i)?e2k?;

i?eiiLni?e???i?i?2k?i?2???e1????2k???2??;

(3?4i)1?i?e(1?i)Ln(3?4i)?e4????(1?i)?ln5???arctan?i?2k?i?3?????e44??ln5?arctan?2k??i?ln5?arctan?2k??33???5e??2k?4cosln5???isinln5??,??arctan,k?Z????????3

22、解方程: (1) chz?0;

解:z?Arch0?Ln(0?0?1)?Lni??2k?

??1???i,k?Z. 2?习题3:

1、沿下列路径计算积分

?2?i0z2dz:

(1) 从原点至2?i的直线段;

(2) 从原点沿实轴至2,再由2铅直向上至2?i;

(3) 从原点沿虚轴至i,再由i沿水平方向向右至2?i. 解:(1) 从原点至2?i的直线段的复参数方程为z?x?ix1,dz?(1?i)dx,参数22x:0?2,所以

?2?i01111zdz??(1?i)3x2dx?(1?i)3x3?(2?i)3

023230222(2) 从原点沿实轴至2的直线段的复参数方程为z?x,参数x:0?2,由2铅直向上至2?i的直线段的复参数方程为z?2?iy,参数y:0?1,所以

?2?i0z2dz??z2dz??z2dz??x2dx??(2?iy)2idyC1C200221118i2111?x3??(?iy2?4y?4i)dy???2?4i=?i?(2?i)330033333

(3) 从原点沿虚轴至i的直线段的复参数方程为z?iy,参数y:0?1,由i沿水平方向向右至2?i的复参数方程为z?x?i,参数x:0?2,所以

?

2?i01z2dz??z2dz??z2dz??(iy)2idy??(x?i)2dxC1C200212i1i1???iy2dy??(x?i)2dx???(2?i)3??(2?i)300333322、分别沿y?x与y?x算出积分

?1?i0(x2?iy)dz的值.

解:y?x的复参数方程为z?(1?i)x,dz?(1?i)dx,参数x:0?1所以

??

5、计算积分

1?i0(x2?iy)dz??(x2?ix)(1?i)dx?0151?i; 66y?x2的复参数方程为z?x?ix2,dz?(1?2xi)dx,参数x:0?1所以

1?i0(x?iy)dz??(x2?ix2)(1?2xi)dx?02151?i 66??Czdz的值,其中C为正向圆周: z(1) z?3

解:设C1是C内以被积函数的奇点z?0为圆心的正向圆周,那么

??Czzz?zdz??dz?dz?z???CC11zzzz1??C1zdz?3?2?i=6?i

6、试用观察法得出下列积分的值,并说明观察时所依据的是什么?C是正向圆周z?1: (1) (4)

??Cdz; (2) z?2??Cdz; (3) 2z?2z?3dz??Ccosz;

dz??C1; (5) z?3??Czezdz; (6)

dz??C?i??5?. ?z???z??2??2??dz??Cz?2?0,根据柯西积分定理; dz(2) ??Cz2?2z?3?0,根据柯西积分定理;

dz(3) ??Ccosz?0,根据柯西积分定理;

dz(4) ??C1?2?i,根据复合闭路定理;

z?3解:(1) (5)

??zedz?0,根据柯西积分定理;

Cz(6)

dz4?i???C?i??5?5?i,根据柯西积分定理及复合闭路定理.

?z???z??2??2??

7、沿指定曲线的正向计算下列积分: (1)

????Cezdz,C:z?3?1; z?3dz,C:z?a?a; 22z?a(2)

C(3)

??Ceiz4C:z?2i?dz,; 23z?1zdz,C:z?2; z?3(4)

??C(5)

dz??C(z2?1)(z3?1),C:z?r?1;

(6)

??Cz3coszdz,C为包围z?0的闭曲线;

(7)

dz3C:z?,; ??C(z2?1)(z2?4)2(8) (9)

sinz??Czdz,C:z?3;

???Ccosz2???z??2??dz,C:z?3;

ez(10) ??Cz5dz,C:z?1. ezz解:(1) ??Cz?3dz?2?i?e(2)

z?3?2?e3i;

dz1?2?i???Cz2?a2z?a??z??a?ai;

eizeiz?(3) ?; dz?2?i???Cz2?1z?iz?ie(4)

??Czdz?0; z?3(5)

dz??C(z2?1)(z3?1)?0;

(6)

??zC3coszdz?0;

?dz?1?dzdz??2??C(z2?1)(z2?4)2i?????C(z?i)(z2?4)??C(z?i)(z?4)?(7) ;

??1?11??2?2??02i?z?4z??iz?4z?i?(8) (9)

sinz??Czdz?2?i?sinzz?0?0;

???Ccosz??z???2??dz?22?i???sinz???2?i;

?1!z?2ez2?iz(10) ?dz??e5?Cz(5?1)!

?z?0?i12.

21、证明:u?x?y和v?22y都是调和函数,但是u?iv不是解析函数. 22x?y?2u?u?u?2u?2x,2?2,??2y,2??2, 证明:因为?x?x?y?y?v?2xy?2v6x2y?2y3?vx2?y2?2v2y3?6x2y?2,2?,,2?, ?22222322223?x(x?y)?x(x?y)?y(x?y)?y(x?y)所以

?2u?2u?2v?2v????2?0,2?2?0,且u?x?vy,uy??vx. 2?x?y?x?y即u?x2?y2和v?

22、由下列各已知调和函数求解析函数f(z)?u?iv,并写出z的表达式: (1) u?(x?y)(x2?4xy?y2); (2) v?y都是调和函数,但是u?iv不是解析函数.

x2?y2y,f(2)?0; 22x?y(3) u?2(x?1)y,f(2)??i.

解:(1) 因为f(z)?u?iv是调和函数,所以

?v?u?v?u????3x2?6xy?3y2,??3x2?6xy?3y2. ?x?y?y?x于是

v??(3x2?6xy?3y2)dy?g(x)?3x2y?3xy2?y3.

那么

?v?g?(x)?6xy?3y2??3x2?6xy?3y2, ?x则

g(x)??x3?C,

所以

v??x3?3x2y?3xy2?y3?C,

f(z)?(x3?3x2y?3xy2?y3)?i(?x3?3x2y?3xy2?y3)?iC3223?(1?i)??x?3x(iy)?3x(iy)?(iy)???iC

?(1?i)z3?iC?v?2xy?vx2?y2?(2) ,. ??x(x2?y2)2?y(x2?y2)2因为f(z)?u?iv是调和函数,所以

x2?y2?2xy(x?iy)211?, f?(z)?v??iv??i???yx(x2?y2)2(x2?y2)2(x2?y2)2(x?iy)2z2从而f(z)??1z?C. 由f(2)?0知C?12,所以f(z)?112?z.

(3) 因为f(z)?u?iv是调和函数,所以

?v?u?v?x???y??2(x?1),?y??u?x?2y. 于是

v??2ydy?g(x)?y2.

那么

?v?x?g?(x)??2(x?1), 则

g(x)??x2?2x?C,

所以

v??x2?2x?y2?C,

f(z)?(2xy?2y)?i(?x2?2x?y2)?iC??i??(x?iy)2?2(x?iy)?1???iC

??i(z?1)2?iC由f(2)??i知C?0,所以f(z)??i(z?1)2.

习题4:

1、下列数列?zn?是否收敛?若收敛,求其极限.

?n(1) z1?ni?i?nin?1?ni; (2) zn???1?2??; (3) zn?(?1)?n?1;n?i(4) z?n?e2.

1?ni1?n2?2ni1?n22n1?n2???i??1,虚解:(1) zn?,当n??时,实部1?ni1?n21?n21?n21?n2部

2n?0,所以?zn?收敛于?1. 21?n?ni??(2) zn??1???2?敛于0.

?5??ni?5?,当时??en????2???2???0,那么zn?0,所以?zn?收

?????n?n(3) 当n??时,实部(?1)n是发散的,所以?zn?发散. (4) zn?e?n?i2?cosn?n??isin,实部和虚部都发散,所以?zn?发散. 22

2、判断下列级数的收敛性与绝对收敛性:

??1?3?(1) ???1???i2?; (3)

n?n?1???n???n?n?1?e?n?i22n.

n3?1??1?解:(1) 记zn??1???i2,则当n??时Re(zn)??1???e,那么zn不趋近于

n?n??n?0,所以级数发散.

n?i2n?i2n(3)

?n?1?e?n2??1e收敛,即级数绝对收敛,所以收敛. ?22nn?1n?1n???

7、将下列各函数展成z的幂级数,并指出它们的收敛半径. (1)

12cosz. ; (3) 31?z?11解:(1) ???(?z3)n?1?z3?z6??. 331?z1?(?z)n?0因为??lim(?1)n?1(?1)nn???1,所以收敛半径R?1.

2n?cos2z?11??n(2z)cosz????(?1)?1?22?n?0(2n)!?(3)

2n?12n23456?2z12z2z2z??(?1)n??1?????(2n)!22!4!6!n?02

(?1)因为??limn??n?122n?1(2n?2)!n22n?1(?1)(2n)!?lim4?0,所以收敛半径R??.

n??(2n?1)(2n?2)

8、将下列各函数在指定点z0处展成泰勒级数,并指出它们的收敛半径. (3)

11,; (4) ,z0?1?i; (6) arctanz,z0?0. z??102z4?3z?1?n?1,则2??(n?1)(z?1)n.

zn?0f(n)(z0)(?1)n(n?1)!z?n?2解:(3) cn??n!n!因为??limn??z?z0n?1n?1,所以收敛半径R?1.

3n,则 ?(1?3i)n?1f(n)(z0)3nn!(4?3z)?n?1(4) cn??n!n!z?z0?13nn. ??z?(1?i)??4?3zn?0(1?3i)n?13n?1因为??limn??(1?3i)n?2z3103n,所以收敛半径. R??n?13(1?3i)102n?1??zzdz?2n2nnz(6) arctanz??. ???n?0(?z)dz???(?z)dz??(?1)01?z2002n?1n?0n?0(?1)n?1因为??limn??2n?3(?1)n?1,所以收敛半径R?1.

2n?1

10、求下列各函数在指定圆环域的洛朗级数展开式: (2)

1,0?z?1,1?z?1???; 2z(1?z)1,在以i为中心的圆环域内;

z2(z?i)1,z?3.

(z?2)(z?3)(5)

(7)

?11?1??n??解:(2) 在0?z?1内,由于??z,且?,所以 2(1?z)1?zn?0?1?z??1??(n?1)zn, 2(1?z)n?0?1从而??(n?2)zn. 2z(1?z)n??1在1?z?1???内,由于

1?1,所以 z?1n11111??1??????????, z1?(z?1)z?11?1z?1n?0?z?1?z?1?1(?1)n从而. ??2n?3z(1?z)n?0(z?1)1?1??(5) 当0?z?i?1时,由于????2,且

z?z?n?11111??z?i?n(z?i), ??????????(?1)n?1z?izi?(z?i)i1?in?0?i?n?0iinn?1n?2??11nn(z?i)n?1n(z?i)所以2???(?1),从而2. ??(?1)n?1n?1ziz(z?i)in?1n?1当1?z?i??时,由于

i?1,所以 z?1n?11111??i?inn, ???????????(?1)zi?(z?i)z?i1?iz?in?0?z?i?n?0(z?i)n?1z?in?11?1??n(n?1)i且????2,从而2??(?1),所以 n?2zzz(z?i)??n?1n?1n(n?1)i. ??(?1)z2(z?i)n?1(z?i)n?3(7) 由于

23?1且?1,所以 zz1111?11????????(z?2)(z?3)z?3z?2z?1?3z1?2z? nnnnnn????1??3?3?2?2??13?2??????????????nn?1z?zzzzz????n?0n?0n?0n?0???

习题5:

1、求下列函数的孤立奇点并确定它们的类别,若是极点,指出它们的级. (1)

11sinz1ln(z?1)sin; (3) ; (4) ; (7) ; (11) .

z31?zzz2(ez?1)z(z2?1)211lim??,的孤立奇点.由于2222z?0z(z?1)z(z?1)解:(1) 易见z?0,z??i是f(z)?1??,所以z?0,z??i是极点.

z??iz(z2?1)2limz?0,一级极点,z??i,二级极点.

sinz(3) lim3??,所以z?0是极点.z?0,二级极点.

z?0zln(z?1)ln(z?1)?1,所以z?0是可去奇点;(4) 易见z?0是f(z)?的孤立奇点,且lim

z?0zz(7) z?0,三级极点,z?2k?i(k??1,?2,?),一级极点; (11) z?1,本性奇点.

5、求下列各函数在有限奇点处的留数.

z2112zsin(2) ; (3) ; (6) . 222zz?1?z??z?1?解:(2) 记f(z)?规则Ⅰ,

1,则易见0,?1是f(z)的孤立奇点,且他们都是一级极点.由2z?1?z?1?1,

z?01?z2Res[f(z),0]?lim?z?0?f(z)?limz?0Res[f(z),1]?lim?z?1?f(z)?limz?1z?1?11??,

z(1?z)2Res[f(z),?1]?lim?z?1?f(z)?limz??111??.

z??1z(1?z)2(3) 记f(z)?z2?z2?1?2,则f(z)有二级极点?i.由规则Ⅱ,

Res[f(z),i]?1d2izi, lim?z?if(z)?lim??????z?i(z?i)3(2?1)!z?idz?41d?2izi. lim?z?if(z)?lim????3??z??iz??i(2?1)!dz(z?i)411,则f(z)有本性奇点z0?0.因为sin在z0?0的去心邻域

zzRes[f(z),?i]?2(6) 记f(z)?zsin0?z??内的洛朗级数为

1?(?1)nz?2n?1 sin??zn?0(2n?1)!于是有

1?(?1)nz?2n?1zsin??zn?0(2n?1)!2?0?z???

其中n?1的项的系数c?1??13!,所以

Res[f(z),0]??

6、利用留数定理计算下列积分. (1)

1 6dz22C,为圆周x?y?2(x?y) 22??(z?1)(z?1)C解:被积函数f(z)在圆周C的内部有一级极点z0?i和二级极点z1?1,由留数的计算规则Ⅰ、Ⅱ得

Res[f(z),i]?lim?z?i?f(z)?limz?iz?i11?, 2(z?1)(z?i)4Res[f(z),1]?1d?2z12lim??z?1?f(z)??lim2??.

?z?1(z?i)2(2?1)!z?1dz?2于是由留数定理得积分值

dz?i?2?iRes[f(z),i]?Res[f(z),1]?? ??22??(z?1)(z?1)2Ce2zdz (2) ?2?(z?1)z?2解:被积函数f(z)在z?2内有一个二级极点z0?1,由留数的计算规则Ⅱ得

Res[f(z),1]?1d2lim??z?1?f(z)??lim2e2z?2e2

?z?1(2?1)!z?1dz?于是由留数定理得积分值

e2z2dz?2?iRes[f(z),1]?4?ei 2??(z?1)z?2(4)

z?sinz??3zdz

2解:被积函数f(z)在z?知

3内有可去奇点z0?0,则Res[f(z),0]?0,所以由留数定理2z?sinz??3zdz?0

2(6)

??z?12esinzdz

z2(z2?1)1内有一个二级极点z0?0,由留数的计算规则Ⅱ得 2解:被积函数f(z)在z?1d2esinz(z2?1)cosz?2zesinzRes[f(z),0]?lim?zf(z)??1 ??limz?0(2?1)!z?0dz?(z2?1)2于是由留数定理得积分值

??z?12esinzdz?2?iRes[f(z),0]?2?i 22z(z?1)d?

5?3cos?i? 9、(1)

?2?0z2?1dz解:令z?e,则d??,cos??.于是

iz2zI??被积函数f(z)?2?0d?2dz ??25?3cos?iz?3z?10z?3?111z??在内有一个一级极点,其留数 z?123z?10z?33

111?1?Res[f(z),?]?lim?z??f(z)?lim?

13z??1?3?8z??3(z?3)33所以

21?I?2?i???

i82(5)

???0x2dx

(x2?1)(x2?4)x2解:R(x)?2是偶函数,而R(z)在上半平面内有一级极点z0?i和z1?2i,2(x?1)(x?4)且

z2i, Res[R(z),i]?lim?z?i?R(z)?lim?z?iz?i(z?i)(z2?4)6z2iRes[R(z),2i]?lim?z?2i?R(z)?lim2??,

z?2iz?2i(z?1)(z?2i)3所以

???0x21?ii??dx??2?i?????

(x2?1)(x2?4)2?63?6(6)

?????cosxdx

(x2?1)(x2?9)1,m?4,n?0,m?n?1,且R(z)在实轴上无孤立奇点,故

x4?10x2?9??解:R(x)?积分

?存在,所求积分I是它的实部.

??eixdx 22(x?1)(x?9)函数R(z)在上半平面有两个一级极点z0?i和z1?3i,而且

eizi, Res[R(z)e,i]?lim?z?i?R(z)e?lim??z?iz?i(z?i)(z2?9)16eizizeizi, Res[R(z)e,3i]?lim?z?3i?R(z)e?lim2?z?3iz?3i(z?1)(z?3i)48e3iziz从而

?????eixi???i2dx?2?i???3e?1? ??223?3(x?1)(x?9)?16e48e?24e所以

?

????cosx?2dx?3e?1? ?223(x?1)(x?9)24e习题8:

4、试求f(t)?e?t的傅氏变换.

解:f(t)的傅里叶变化为

F(?)????e??0????f(t)e?j?tdt??ete?j?tdt??e?te?j?tdt??00??(1?j?)tdt??e?(1?j?)tdt0??0??11(1?j?)t0?e?e?(1?j?)t??1?j??(1?j?)112???21?j?1?j???1

5、试求矩形脉冲f(t)??

?A,0?t??,的傅氏变换.

?0,其他解:f(t)的傅里叶变化为

F(?)??????f(t)e?j?tdt??Ae?j?tdt0?A?j?t?A(1?e?j??)?e?0?j?j?

6、求下列函数的傅氏积分:

?0,???t??1,??1,?1?t?0,?(1) f(t)??

?1,0?t?1,??0,1?t???.解:f(t)是(??.??)上的奇函数,则

a(?)?0,

b(?)?2????0f(?)sin??d??2??10sin??d???21?cos??,

?于是

f(t)??a(?)cos?td???b(?)sin?td?00??????

??0?21?cos?2??1?cos???sin?td???sin?td?

??0?22??1?t,t?1,7、求函数f(t)??的傅氏积分,并计算 2t?1??0,?a(?)?2????xcosx?sinxx?cosdx. 3x2解:f(t)是(??.??)上的偶函数,则

????0f(?)cos??d??2??10(1??2)cos??d??4(sin???cos?)??3,

b(?)?0,

于是

f(t)??a(?)cos?td???b(?)sin?td?00??????

??4(sin???cos?)0??3?cos?td??4????sin???cos?

0?3cos?td?10、求符号函数sgnt????1,t?0,的傅氏变换.(提示:sgnt?2u(t)?1.)

?1,t?0?1?2. ???(?)??2??(?)?j?j?????解:方法一:F[sgnt]?2F[u(t)]?2??(?)?2???0方法二:F(?)?

???sgnt?e?j?tdt???e???j?tdt??e?j?tdt?02. j?11、求函数f(t)?sin2tcost的傅氏变换. 解:f(t)?sin2tcost?sin(2t?t)?sin(2t?t)1??sin3t?sint?,则

22F[f(t)]?1?F[sin3t]?F[sint]?2j??[?(??3)??(??3)??(??1)??(??1)]2

15、利用位移性质计算下列函数的傅氏变换:

(1) u(t?C);(2)

1[?(t?a)??(t?a)] 2解:(1)

F[u(t?C)]?e?j?CF[u(t)]?e?j?C??1?1?j?C???(?)??e???(?); ?j??j?j?a?j?a??(t?a)??(t?a)?F[?(t?a)]?F[?(t?a)]e?e(2) F????cos?a. ?222??

23、求下列函数的傅氏变换: (2) f(t)?ej?0tu(t);(3) f(t)?ej?0tu(t?t0);(4) f(t)?ej?0ttu(t).

1???(?),由卷积j?j?0t解:(2) 记F(?)?F[e]?2??(???0),F2(?)?F[u(t)]?1定理有

11F[f(t)]?F1(?)?F2(?)?2?2??1?2??(???)???(???)0??d????j(???)??????1???(t)????(??t??0)?dt(令t????0) ???j(??t??0)????11???(??t??0)????(???0)j(??t??0)j(???)0t?01j?0t(3) 记F]?2??(???0),F2(?)?F[tu(t)]??1(?)?F[e?2?j???(?),由卷积

定理有

F[f(t)]???1?2??(???)??j??(???)d?0??2????(???)?????1????(t)???j??(??t??0)?dt(令t????0) 2??(??t??)0??11F1(?)?F2(?)?2?2?????11??j??(??t??)???j???(???0)022(??t??0)(???0)t?01?j?t0e???(?),由j?j?0t(4) 记F]?2??(???0),F2(?)?F[u(t?t0)]?1(?)?F[e卷积定理有

F[f(t)]???11F1(?)?F2(?)?2?2??1???(t)?e?j(??t??0)t0???j(??t??0)?

?1??j(???)t02??(???)e???(???)d?0??????j(???)?????(??t??0)?d?(令t????0)

???11e?j(??t??0)t0???(??t??0)?e?j(???0)t0???(???0)j(??t??0)j(???0)t?0习题9:

2、求下列函数的拉氏变换:

?1,0?t?1,?(1) f(t)???1,1?t?5,

?0,t?5?(3) f(t)?cost?(t)?sintu(t). 解:(1) L[f(t)]????01f(t)edt??edt??e?stdt?(1?2e?s?e?5s).

01s?st1?st5(3) L[f(t)]????0f(t)edt???st??01s2(1?sint)edt?1?2?.

s?1s2?1?st

3、求下列周期函数的拉氏变换:

?sint,0?t??,2?(1) f(t)以为周期且在一个周期内的表达式为f(t)??.

0,??t?2??T?11?stL[f(t)]?f(t)edt?sinte?stdt?sT?0?sT?01?e1?e解:

?11?(j?s)t1??edt??sinte?(j?s)tdt??2?s?01?e2j0(1?e??s)(s2?1)??

4、求下列函数的拉氏变换: (1) f(t)?(t?1)e; (2) f(t)?5sin2t?3cost; (3) f(t)?1?te;

(6) f(t)?ecoskt(k为实常数);

tt2t(9) f(t)?te?3tsin2t; (10) f(t)?t?e0t?3tsin2tdt;

e?3tsin2t(11) f(t)?.

tL[f(t)]?L[t2et?2tet?et]?L[t2et]?2L[tet]?L[et]解:(1)

211s2?4s?5??2???32(s?1)(s?1)s?1(s?1)3103s? s2?4s2?1

(2) L[f(t)]?5L[sin2t]?3L[cost]?(3) L[f(t)]?L[1]?L[te]?t11?; 2s(s?1)(6) F(s)?L[coskt]?s?1sL[f(t)]?F(s?1)?,则由位移性质有;

s2?k2(s?1)2?k224(s?3)?L[f(t)]??F(s)?,则; 222(s?3)?4[(s?3)?4]2?te?3tsin2tdt??1F(s),从而 L,则

????0?s(s?3)2?4(9) F(s)?L[e?3tsin2t]?(10) F(s)?L[e?3tsin2t]?2d?1?2(3s?12s?13); L[f(t)]???F(s)??222ds?ss[(s?3)?4]?(11) F(s)?L[e??3tsin2t]?2,则

(s?3)2?4s?3s?3?arccot. 22L[f(t)]??F(s)ds?s?2?arctan

(9) f(t)?te?3tsin2t; (10) f(t)?t?e0t?3tsin2tdt;

e?3tsin2t(11) f(t)?.

tL[f(t)]?L[t2et?2tet?et]?L[t2et]?2L[tet]?L[et]解:(1)

211s2?4s?5??2???32(s?1)(s?1)s?1(s?1)3103s? s2?4s2?1

(2) L[f(t)]?5L[sin2t]?3L[cost]?(3) L[f(t)]?L[1]?L[te]?t11?; 2s(s?1)(6) F(s)?L[coskt]?s?1sL[f(t)]?F(s?1)?,则由位移性质有;

s2?k2(s?1)2?k224(s?3)?L[f(t)]??F(s)?,则; 222(s?3)?4[(s?3)?4]2?te?3tsin2tdt??1F(s),从而 L,则

????0?s(s?3)2?4(9) F(s)?L[e?3tsin2t]?(10) F(s)?L[e?3tsin2t]?2d?1?2(3s?12s?13); L[f(t)]???F(s)??222ds?ss[(s?3)?4]?(11) F(s)?L[e??3tsin2t]?2,则

(s?3)2?4s?3s?3?arccot. 22L[f(t)]??F(s)ds?s?2?arctan

本文来源:https://www.bwwdw.com/article/bnxp.html

Top