锂离子电池原理、不良项目及成因、涂布方法和充电

更新时间:2023-06-09 21:36:02 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

锂离子电池原理、常见不良项目及成因、涂布方法和充电

锂离子电池的基本知识

一般而言,锂离子电池有三部分构成:

1.锂离子电芯

2.保护电路(PCM)

3.外壳即胶壳

分类

从锂离子电池与手机配合情况来看,一般分为外臵电池和内臵电池,这种叫法很容易理解,外臵电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内臵电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA 998,8088,NOKIA的大部分机型

1.外臵电池

外臵电池的封装形式有超声波焊接和卡扣两种:

1.1超声波焊接

外壳

这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了.

超声波焊塑机焊接

有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设臵有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设臵则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲.

1.2卡扣式

卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLA V66.

2.内臵电池

内臵电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起) 超声波焊接的电池主要有:NOKIA 8210,8250,8310,7210等.

包标的电池就很多了,如前两年很浒的MOTO998 ,8088了.

锂离子电池原理及工艺流程

一、 原理

1.0 正极构造

LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极 2.0 负极构造

石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极

电芯的构造

电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。

根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。

3.0工作原理

锂离子电池内部成螺旋型结构,正极与负极之间由一层具有许多细微小孔的薄膜纸隔开。锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。锂离子电池的正极采用钴酸锂,正极集流体是铝箔;负极采用碳,负极集流体是铜箔,锂离子电池的电解液是溶解了LiPF6的有机体。

锂离子电池的正极材料是氧化钴锂,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生茶鞥的锂离子经过电解液运动到负极。而作为负极的碳呈现层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样道理,党对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,有运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。

锂离子电池盖帽上有防爆孔,在内部压力过大的情况下,防爆孔会自动打开

泄压,以防止出现爆炸的现象。

锂离子电池的性能

1、高能量密度

与同等容量的NI/CD或NI/MH电池相比,锂离子电池的重量轻,其体积比能量是这两类电池的1.5~2倍。

2、高电压

锂离子电池使用高电负性的含元素锂电极,使其端电压高达3.7V,这一电压是NI/CD或NI/MH电池电压的3倍。

3、无污染,环保型

4、循环寿命长

寿命超过500次

5、高负载能力

锂离子电池可以大电流连续放电,从而使这种电池可被应用于摄象机、手提电脑等大功率用电器上。

6、优良的安全性

由于使用优良的负极材料,克服了电池充电过程中锂枝晶的生长问题,使得锂离子电池的安全性大大提高。同时采用特殊的可恢复配件,保证了电池在使用过程中的安全性。

※在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制:

1.负极材料的处理

1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。

2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。

2.制浆工艺的控制

1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。

2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。

3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。

3.采用先进的极片制造设备

1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。

2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。

3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。

4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。

4.先进的封口技术

目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素:

1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。

2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。

3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。

3.1 充电过程

如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。

正极上发生的反应为

LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)

负极上发生的反应为

6C+XLi++Xe=====LixC6

3.2 电池放电过程

放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。

二、 工艺流程 锂离子电池的工艺技术非常严格、复杂,这里只能简单介绍一下其中的几个主要工序。1、制浆:用专门的溶剂和粘结剂分别与粉末状的正负极活性物质混合,经高速搅拌均匀后,制成浆状的正负极物质。2涂膜:将制成的浆料均匀地涂覆在金属箔的表面,烘干,分别制成正负极极片。3、装配:按正极片—隔膜—负极片—隔膜自上而下的顺序放好,经卷绕支持呢个电池极芯,再经注入电解

液、封口等工艺过程,即完成电池的装配过程,制成成品电池。4、化成:用专用的电池充放电设备对成品电池进行充放电测试,对每一只电池都进行检测,筛选出合格的成品电池,待出厂。

锂离子电池配料的基本知识

一、电极的组成:

1、 正极组成:

a、 钴酸锂:正极活性物质,锂离子源,为电池提高锂源。

b、 导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。

c、 PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。

d、 正极引线:由铝箔或铝带制成。

2、 负极组成:

a、 石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造 石墨两大类。

b、 导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。 提高反应深度及利用率。

防止枝晶的产生。

利用导电材料的吸液能力,提高反应界面,减少极化。

(可根据石墨粒度分布选择加或不加)。

c、 添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。 d、 水性粘合剂:将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。 e、 负极引线:由铜箔或镍带制成。

二、配料目的:

配料过程实际上是将浆料中的各种组成按标准比例混合在一起,调制成浆料,以利于均匀涂布,保证极片的一致性。配料大致包括五个过程,即:原料的预处理、掺和、浸湿、分散和絮凝。

三、 配料原理:

(一) 、正极配料原理

1、 原料的理化性能。

(1) 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。

锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。

(2) 导电剂:非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为 2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。

(3) PVDF粘合剂:非极性物质,链状物,分子量从300,000到3,000,000

不等;吸水后分子量下降,粘性变差。

(4) NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。

2、 原料的预处理

(1) 钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。

(2) 导电剂:脱水。一般用200 oC常压烘烤2小时左右。

(3) 粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。

(4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。

3、 原料的掺和:

(1) 粘合剂的溶解(按标准浓度)及热处理。

(2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。

4、 干粉的分散、浸湿:

(1)原理:固体粉末放臵在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。

当润湿角≤90度,固体浸湿。

当润湿角>90度,固体不浸湿。

正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。

(2) 分散方法对分散的影响:

A、 静臵法(时间长,效果差,但不损伤材料的原有结构);

B、 搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。

1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。

2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。

3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。

4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度

越大;浓度越低,粘接强度越小。

5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热浆料

容易结皮,太冷浆料的流动性将大打折扣。

5、 稀释。将浆料调整为合适的浓度,便于涂布。

(二)、负极配料原理(大致与正极配料原理相同)

1、 原料的理化性能。

(1)石墨:非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径D50为20μm左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。

(2) 水性粘合剂(SBR):小分子线性链状乳液,极易溶于水和极性溶剂。

(3) 防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。

(4)异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。 乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度(异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然后选择添加哪种)。

(5)去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。

2、 原料的预处理:

(1)石墨:A、混合,使原料均匀化,提高一致性。B、300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。

(2) 水性粘合剂:适当稀释,提高分散能力。

3、 掺和、浸湿和分散:

(1) 石墨与粘合剂溶液极性不同,不易分散。

(2) 可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。

(3) 应适当降低搅拌浓度,提高分散性。

(4)分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。

(5) 搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。

(6) 分散原理、分散方法同正极配料中的相关内容,在三、(一)、4中有详细论述,在此不予详细解释。

4、 稀释。将浆料调整为合适的浓度,便于涂布。

四、 配料注意事项:

1、 防止混入其它杂质;

2、 防止浆料飞溅;

3、 浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;

4、 在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;

5、 浆料不宜长时间搁臵,以免沉淀或均匀性降低;

6、 需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;

7、搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;

8、 出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;

9、 对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;

10、 配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。

五、总论:随着电池制程的日益透明,锂离子电池生产厂家越来越将配料列为核心机密,因为从材料的挑选、处理到合理搭配包含了太多技术人员的心血,同样的材料,有的厂家用起来特别顺利,有的厂家就麻烦百出;有的厂家用中档的材料可以做出高端的电池,而有的厂家却使用最好的材料做成的电池惨不忍睹;本人在此发表配料的基础知识,旨在让大家对配料的了解多一些,少走一些弯路;但因本人水平有限,难免有疏漏之处,希望大家多多批评指正。我也期望大家在工作中认真研究,真诚交流,大胆创新,团结起来,共同促进中国锂离子电池生产水平的提高。

锂离子电池制片过程掉粉的分析与讨论。极片掉粉目前钴酸锂的生产工艺,基本上不会掉粉,掉粉的可能性在生产过程中影响的因素有:

1、配方比例不当,如粘接剂太少,容剂少致使搅拌不均匀。

2、粘接剂烘烤温度过高,使粘接剂结构受到破坏,。

3、浆料搅拌时间不够,没有完全搅拌开,

4、涂布时温度太低,极片未烘干。

5、涂布量不均匀,厚度差异太大。

6、极片在辊压前未烘烤,在空气中大量吸收水份。

7、辊压时压力过大,使极粉与集流体剥离。

8、辊压时极片的放送方式不对,造成极片受力不均。

9、用油性正极,水性负极,不掉粉的?

三、 电池不良项目及成因:

1.容量低

产生原因:

a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少e. 电解液电导率低;f. 正极与负极配片未配好;

g. 隔膜孔隙率小;h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透)j. 分容时未充满电; k. 正负极材料比容量小。

2.内阻高

产生原因:

a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊;

d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂;g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。

3.电压低

产生原因:

a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全);c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯);

e. 毛刺; f. 微短路; g. 负极产生枝晶。

4.超厚产生超厚的原因有以下几点:

a. 焊缝漏气; b. 电解液分解; c. 未烘干水分;d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚;g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。

5.成因有以下几点

a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高→粘合剂老化→脱料; c. 负极比容量低;d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。

6.爆炸

a. 分容柜有故障(造成过充);b. 隔膜闭合效应差; c. 内部短路

7.短路

a. 料尘; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好);d. 卷绕不齐; e. 没包好; f. 隔膜有洞; g. 毛刺

8.断路

a) 极耳与铆钉未焊好,或者有效焊点面积小;

b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下)

四锂离子电池的安全特性

锂离子电池已非常广泛的应用于人们的日常生活中,所以它的安全性能绝对应该是锂离子电池的第一项考核指标。对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足一下条件。1)短路:不起火,不爆炸;2)过充电:不起火,不爆炸;3)热箱试验:不起火,不爆炸(150℃恒温10min)

4)针刺:不爆炸(用Φ3mm钉穿透电池);5)平板冲击:不起火,不爆炸;(10kg重物自1米高处砸向电池);6)焚烧:不爆炸(煤气火焰烧考电池)

为了确保锂离子电池安全可靠的使用,专家们进行了非常严格、周密的电池安全设计,以达到电池安全考核指标。1、隔膜135℃自动关断保护:采用国际先进的Celgard2300PE-PP-PE三层复合膜。在电池升温达到120℃的情况下,复合膜两侧的PE膜孔闭合,电池内阻增大,电池内部形成大面积断路,电池不再升温。3、电池盖复合结构:电池盖采用刻痕防爆结构,当电池升温,压力达到一定程度刻痕破裂、放气。4、各种环境滥用试验:进行各项滥用试验,如外部短路、过充、针刺、平板冲击、焚烧等,考察电池的安全性能。同时对电池进

行温度冲击试验和振动、跌落、冲击等力学性能试验,考察电池在实际使用环境下的性能情况。

锂离子电池保护线路(PCM)

锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言: 过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。

过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误

极片浆料涂布工艺路线的选择

1.1 涂布方法的选择

成功解决极片浆料涂布的关键之一是选择合适的涂布方法。大约有20多种涂布方法可以用于将液体料液涂布于支持体上,而每一种技术有许多专门的配臵,所以有许多种涂布型式可供选择。

在研制锂离子电池实验室研究阶段,有用刮棒、刮刀或挤压等自制简单的涂布实验装臵进行极片涂布试验,只能涂布出少量样品供实验研究,效果并不太理想,并存在各种各样的问题。

一般选择涂布方法需要从下面几个方面考虑,包括:涂布的层数,湿涂层的厚度,涂布液的流变特性,要求的涂布精度,涂布支持体或基材,涂布的速度等。 如何选择适合极片浆料的涂布方法?除上述因素外,还必须结合极片涂布的具体情况和特点。锂离子电池极片涂布特点是:①双面单层涂布;②浆料湿涂层较厚(100~300μm);③浆料为非牛顿型高粘度流体;④相对于一般涂布产品而言,极片涂布精度要求高,和胶片涂布精度相近;⑤涂布支持体为厚度为10~20μm的铝箔和铜箔;⑥和胶片涂布速度相比,极片涂布速度不高。

我们首先从涂布层数来考虑选择涂布的技术路线。极片需要在金属箔两面都涂浆料。目前有同时在支持体两面进行涂布的技术,但如果选用同时双面涂布方法,就会使涂布后的干燥和极片传送设备变成极为复杂和难于操作。因此我们的涂布技术路线决定选用单层涂布,另一面在干燥后再进行一次涂布。考虑到极片涂布属于厚涂层涂布。刮棒、刮刀和气刀涂布只适用于较薄涂层的涂布,不适用于极片浆料涂布。在余下的几种涂布方法中,浸涂最为简单,但其涂布厚度受涂布浆料粘度和涂布速度影响,难于进行高精度涂布。

综合考虑极片浆料涂布的各项特殊要求,挤压涂布或辊涂可供选择。

1.2 条缝挤压涂布及其涂布窗口

挤压涂布技术是较为先进的技术,可以用于较高粘度流体涂布,能获得较高精度的涂层。

采用条缝挤压涂布,如何获得均匀的涂层?必须使挤压嘴的设计及操作参数在一个合适的范围内,也就是进入在涂布技术中称为“涂布窗口”的临界条件范围内,才能进行正常涂布。

挤压嘴的设计对涂布精度有极为重要的影响。因此设计时需要有涂布浆料流变特性的详细数据。而一旦按提供的流变数据设计加工出的挤压嘴,在涂布浆料流变性质有较大改变时,就有可能影响涂布精度,挤压涂布设备比较复杂,运行操作需要专门的技术。

1.3 辊涂工艺的涂布窗口

辊涂是比较成熟的涂布工艺,如果有高精度涂布辊和精密轴承,有可能得到均匀度较好的涂层。辊涂可以应用于极片浆料的涂布。

辊涂有多种型式,按辊的转动方向区分就有顺转辊和逆转辊涂布两种。此外还有配臵3辊、4辊等多达10多种辊涂型式。

究竟用哪一种辊涂型式比较好呢?这要根据各种浆料的流变性质进行选择。也就是所设计的辊涂型式,结构尺寸,操作条件,涂液的物理性质等各种条件必须在一个合理的范围内,也就是操作条件进入涂布窗口,才能涂布出无弊病的涂层。

2 极片涂布中的关键技术

在所有涂布产品中胶片所要求的涂布精度是最高的一种,因此胶片涂布中的许多技术是解决极片涂布的基础。但极片涂布所特有的要求必须有特殊的技术才能解决。

2.1 高粘度极片浆料的涂布

极片浆料粘度极高,超出一般涂布液的粘度,而且所要求的涂量大,用现有常规涂布方法无法进行均匀涂布。我们比较分析了各种涂布方法,依据其流动机理,结合极片浆料的流变特性和涂布要求,设计了各种实验方案进行验证,找到了几种可用于极片浆料的涂布方法,成功地解决了高粘度极片浆料连续稳定、均匀涂布难题。

2.2 极片定长分段和双面叠合涂布技术

无论是胶片涂布,还是其他涂布产品,绝大多数都是在片幅上进行连续涂布。而锂离子电池极片是分段涂布,生产不同型号锂离子电池,所需要的每段极片长度也是不同的。如果采用连续涂布,再进行定长分切生产极片,在组装电池时需要在每段极片一端刮除浆料涂层,露出金属箔片。用连续涂布定长分切的工艺路线,效率低,不能满足最终进行规模生产的需要。因此我们考虑采用定长分段涂布方法,在涂布时按电池规格需要的涂布及空白长度进行分段涂布。采用单纯的机械装臵很难实现不同电池规格所需要长度分段涂布。我们在涂布头的设计中采

用计算机技术,将极片涂布头设计成光、机、电一体化智能化控制的涂布装臵。涂布前将操作参数用键盘输入计算机,在涂布过程中由计算机控制,自动进行定长分段和双面叠合涂布。因此涂布机可以任意设定涂布和空白长度进行分段涂布,能满足各种型号锂离子电池极片涂布的需要。

2.3 极片浆料厚涂层高效干燥技术

极片浆料涂层比较厚,涂布量大,干燥负荷大。采用普通热风对流干燥法或烘缸热传导干燥法等干燥效率低。我们将胶片干燥中的高效干燥技术应用于极片干燥器设计,采用优化设计的热风冲击干燥技术,提高了干燥效率,可以进行均匀快速干燥,干燥后的涂层无外干内湿或表面皲裂等弊病。

2.4 极片涂布生产流水线基片(极片)传输技术

在极片涂布生产流水线中从放卷到收卷,中间包含有涂布、干燥等许多环节,极片(基片)有多个传动点拖动。这和胶片涂布干燥生产流水线是相似的。我们成功地将胶片涂布机传输技术应用于极片涂布,又针对基片是极薄的铝箔铜箔,刚性差,易于撕裂和产生折皱等特点,在设计中采取特殊技术装臵,在涂布区使极片保持平展,严格控制片路张力梯度,使整个片路张力都处于安全极限内。在涂布流水线的传动设计中,我们采用了直流电机智能调速控制技术,使涂布点片路速度保持稳定,从而确保了涂布的纵向均匀度。在涂布机传输片路设计中,在涂布、收卷等关键部位,都设计有自动纠偏装臵,在涂布时使浆料准确地涂布于基片上,两边留有均匀的片边,在极片收卷时能得到边缘整齐的片卷,为极片生产的下一道工序创造了有利条件。

3 极片涂布工艺流程

极片涂布的一般工艺流程如下:

放卷→接片→拉片→张力控制→自动纠偏→涂布→干燥→自动纠偏→张力控制→自动纠偏→收卷

涂布基片(金属箔)由放卷装臵放出供入涂布机。基片的首尾在接片台连接成连续带后由拉片装臵送入张力调整装臵和自动纠偏装臵,经过调整片路张力和片路位臵后进入涂布装臵。极片浆料在涂布装臵按预定涂布量和空白长度分段进行涂布。在双面涂布时,自动跟踪正面涂布和空白长度进行涂布。涂布后的湿极片送入干燥道进行干燥,干燥温度根据涂布速度和涂布厚度设定。干燥后的极片经张力调整和自动纠偏后进行收卷,供下一步工序进行加工。

4 设备安装调试及涂布情况

研制的设备由机械设备,电气控制,干燥通风等系统组成,安装后先后进行了机械试车,机电联试和联动试车,均达到设计和使用要求。按锂离子电池的技术要求和设计技术指标投料涂布。

涂布条件:涂布基片厚度为20μm的铝箔,涂布基片宽度为350mm,涂布速度5m/min。

在上述条件下用浆料进行单面定长涂布,双面叠合涂布,同时进行干燥。整

条生产线运行平稳,涂布干燥均匀。

5 样品测试结果

5.1 涂布均匀度

涂布量相对偏差范围为2.22%~-1.85%,绝对误差为4.07%。

6 拉浆正负极极片出现麻点颗粒现象,特别表现在负极拉浆,在涂布那刻表现最明显,到出烤箱后比较难观察到,但是取了片对辊后就明显的颗粒.原因:

(本现象排除箔材氧化及外观不良的可能)

1.浆料放臵时间过久,一般超出12H以上问题会比较严重,请关注是否有此问题,如果有请控制时间

2.浆料粘度过低(放久了粘度也会低),建议控制粘度在2500mpa.s以上

3.浆料存贮温度过高,我遇到过一次,温度>35度时就出现麻点.建议控制温度在25度左右

4.无导电碳的配方很容易出现此问题,暂时无很好的办法,建议参考以下三条

5.搅拌转速度过快,可以适当根据你们的工艺降些转速,只要能搅拌均匀,分散好.涂布时没有堵网现象就不是问题.中转暂存罐的转速也要低些

6.对于已出现麻点的浆料建议处理如下

A.搅拌几罐粘度高的新鲜浆料混合使用掉

B.在涂第二面时用无尘纸在第二面基材上稍微打些水(此方法很容易造成拖尾/尺寸异常等问题,不好掌握,不太建议使用)

7.正极很少出现类是现象.负极倒是经常有这种现象,颗粒现象.把浆料退回抽真空搅拌后会有改善,如果是正极片出现麻点现象就要考虑烘烤的温度了,可以降温减速会有改善

7锂离子电池低容原因分析

近期在收集关于锂离子电池低容量的原因,个人收集原因如下,发上来大家看看有什么补充的没有,希望大家多多指教:

1、压实密度大,

2、极片附粉少,

3、断片,

4、电解液量少,

5、化成不完全,

6、检测容量充放电不完全,

7、潮湿度高(吸水),

8、电池储存久

9、材料的比容量低

10、极片虚焊,极耳虚焊

11、制成过程中的环境控制如.温度、湿度、露点........

12、完善中.........

8.电芯膨胀原因及控制

锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因:

1锂离子嵌入带来的厚度变化

电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。

2. 工艺控制不力引起的膨胀

在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。

关于电池鼓壳和爆炸的原因分析:

一、锂离子电池特性

锂是化学周期表上直径最小也最活泼的金属。体积小所以容量密度高,广受消费者与工程师欢迎。但是,化学特性太活泼,则带来了极高的危险性。锂金属暴露在空气中时,会与氧气产生激烈的氧化反应而爆炸。为了提升安全性及电压,科学家们发明了用石墨及钴酸锂等材料来储存锂原子。这些材料的分子结构,形成了奈米等级的细小储存格子,可用来储存锂原子。这样一来,即使是电池外壳破裂,氧气进入,也会因氧分子太大,进不了这些细小的储存格,使得锂原子不会与氧气接触而避免爆炸。锂离子电池的这种原理,使得人们在获得它高容量密度的同时,也达到安全的目的。

锂离子电池充电时,正极的锂原子会丧失电子,氧化为锂离子。锂离子经由电解液游到负极去,进入负极的储存格,并获得一个电子,还原为锂原子。放电时,整个程序倒过来。为了防止电池的正负极直接碰触而短路,电池内会再加上一种拥有众多细孔的隔膜纸,来防止短路。好的隔膜纸还可以在电池温度过高时,自动关闭细孔,让锂离子无法穿越,以自废武功,防止危险发生。

保护措施

锂电池芯过充到电压高于4.2V后,会开始产生副作用。过充电压愈高,危险性也跟着愈高。锂电芯电压高于4.2V后,正极材料内剩下的锂原子数量不到一半,此时储存格常会垮掉,让电池容量产生永久性的下降。如果继续充电,由于负极的储存格已经装满了锂原子,后续的锂金属会堆积于负极材料表面。这些锂原子

会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过隔膜纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。因此,锂电池充电时,一定要设定电压上限,才可以同时兼顾到电池的寿命、容量、和安全性。最理想的充电电压上限为4.2V。

锂电芯放电时也要有电压下限。当电芯电压低于2.4V时,部分材料会开始被破坏。又由于电池会自放电,放愈久电压会愈低,因此,放电时最好不要放到2.4V才停止。锂电池从3.0V放电到2.4V这段期间,所释放的能量只占电池容量的3%左右。因此,3.0V是一个理想的放电截止电压。

充放电时,除了电压的限制,电流的限制也有其必要。电流过大时,锂离子来不及进入储存格,会聚集于材料表面。这些锂离子获得电子后,会在材料表面产生锂原子结晶,这与过充一样,会造成危险性。万一电池外壳破裂,就会爆炸。 因此,对锂离子电池的保护,至少要包含:充电电压上限、放电电压下限、及电流上限三项。一般锂电池组内,除了锂电池芯外,都会有一片保护板,这片保护板主要就是提供这三项保护。但是,保护板的这三项保护显然是不够的,全球锂电池爆炸事件还是频传。要确保电池系统的安全性,必须对电池爆炸的原因,进行更仔细的分析。

二、电池爆炸原因:

1: 内部极化较大!

2:极片吸水,与电解液发生反应气鼓.

3:电解液本身的质量,性能问题.

4:注液时候注液量达不到工艺要求.

5:装配制程中激光焊焊接密封性能差,漏气.测漏气漏测.

6:粉尘,极片粉尘首先易导致微短路,....具体原因未知

7:正负极片较工艺范围偏厚,入壳难.

8:注液封口问题,钢珠密封性能不好导致气鼓.

9:壳体来料存在壳壁偏厚,壳体变形影响厚度.

三、爆炸类型分析

电池芯爆炸的类形可归纳为外部短路、内部短路、及过充三种。此处的外部系指电芯的外部,包含了电池组内部绝缘设计不良等所引起的短路。

当电芯外部发生短路,电子组件又未能切断回路时,电芯内部会产生高热,造成部分电解液汽化,将电池外壳撑大。当电池内部温度高到135摄氏度时,质量好的隔膜纸,会将细孔关闭,电化学反应终止或近乎终止,电流骤降,温度也慢慢下降,进而避免了爆炸发生。但是,细孔关闭率太差,或是细孔根本不会关闭的

隔膜纸,会让电池温度继续升高,更多的电解液汽化,最后将电池外壳撑破,甚至将电池温度提高到使材料燃烧并爆炸。

内部短路主要是因为铜箔与铝箔的毛刺穿破隔膜,或是锂原子的树枝状结晶穿破膈膜所造成。这些细小的针状金属,会造成微短路。由于,针很细有一定的电阻值,因此,电流不见得会很大。铜铝箔毛刺系在生产过程造成,可观察到的现象是电池漏电太快,多数可被电芯厂或是组装厂筛检出来。而且,由于毛刺细小,有时会被烧断,使得电池又恢复正常。因此,因毛刺微短路引发爆炸的机率不高。 这样的说法,可以从各电芯厂内部都常有充电后不久,电压就偏低的不良电池,但是却鲜少发生爆炸事件,得到统计上的支持。因此,内部短路引发的爆炸,主要还是因为过充造成的。因为,过充后极片上到处都是针状锂金属结晶,刺穿点到处都是,到处都在发生微短路。因此,电池温度会逐渐升高,最后高温将电解液气体。这种情形,不论是温度过高使材料燃烧爆炸,还是外壳先被撑破,使空气进去与锂金属发生激烈氧化,都是爆炸收场。

但是过充引发内部短路造成的这种爆炸,并不一定发生在充电的当时。有可能电池温度还未高到让材料燃烧、产生的气体也未足以撑破电池外壳时,消费者就终止充电,带手机出门。这时众多的微短路所产生的热,慢慢的将电池温度提高,经过一段时间后,才发生爆炸。消费者共同的描述都是拿起手机时发现手机很烫,扔掉后就爆炸。

综合以上爆炸的类型,我们可以将防爆重点放在过充的防止、外部短路的防止、及提升电芯安全性三方面。其中过充防止及外部短路防止属于电子防护,与电池系统设计及电池组装有较大关系。电芯安全性提升之重点为化学与机械防护,与电池芯制造厂有较大关系。

四、设计规范

由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。由于,电路板的故障率一般都远高于一亿分之一。因此,电池系统设计时,必须有两道以上的安全防线。常见的错误设计是用充电器(adaptor)直接去充电池组。这样将过充的防护重任,完全交给电池组上的保护板。虽然保护板的故障率不高,但是,即使故障率低到百万分之一,机率上全球还是天天都会有爆炸事故发生。 电池系统如能对过充、过放、过电流都分别提供两道安全防护,每道防护的失败率如果是万分之一,两道防护就可以将失败率降到一亿分之一。常见的电池充电系统方块图如下,包含充电器及电池组两大部分。充电器又包含适配器(Adaptor)及充电控制器两部分。适配器将交流电转为直流电,充电控制器则限制直流电的最大电流及最高电压。电池组包含保护板及电池芯两大部分,以及一个PTC来限定最大电流。

文字方块: 适配器交流变直流文字方块: 充电控制器限流限压文字方块: 充电器文字方块: 保护板过充、过放过流等防护文字方块: 电池组文字方块: 限流片文字方块: 电池芯以手机电池系统为例,过充防护系利用充电器输出电压设定在

4.2V左右,来达到第一层防护,这样就算电池组上的保护板失效,电池也不会

被过充而发生危险。第二道防护是保护板上的过充防护功能,一般设定为4.3V。这样,保护板平常不必负责切断充电电流,只有当充电器电压异常偏高时,才需要动作。过电流防护则是由保护板及限流片来负责,这也是两道防护,防止过电流及外部短路。由于过放电只会发生在电子产品被使用的过程。因此,一般设计是由该电子产品的线路板来提供第一到防护,电池组上的保护板则提供第二道防护。当电子产品侦测到供电电压低于3.0V时,应该自动关机。如果该产品设计时未设计这项功能,则保护板会在电压低到2.4V时,关闭放电回路。

总之,电池系统设计时,必须对过充、过放、与过电流分别提供两道电子防护。其中保护板是第二道防护。把保护板拿掉后充电,如果电池会爆炸就代表设计不良。

上述方法虽然提供了两道防护,但是由于消费者在充电器坏掉后,常会买非原厂充电器来充电,而充电器业者,基于成本考虑,常将充电控制器拿掉,来降低成本。结果,劣币驱逐良币,市面上出现了许多劣质充电器。这使得过充防护失去了第一道也是最重要的一道防线。而过充又是造成电池爆炸的最重要因素,因此,劣质充电器可以称得上是电池爆炸事件的元凶。

当然,并非所有的电池系统都采用如上图的方案。在有些情况下,电池组内也会有充电控制器的设计。例如:许多笔记型计算机的外加电池棒,就有充电控制器。这是因为笔记型计算机一般都将充电控制器做在计算机内,只给消费者一个适配器。因此,笔记型计算机的外加电池组,就必须有一个充电控制器,才能确保外加电池组在使用适配器充电时的安全。另外,使用汽车点烟器充电的产品,有时也会将充电控制器做在电池组内。

最后的防线

如果电子的防护措施都失败了,最后的一道防线,就要由电芯来提供了。电芯的安全层级,可依据电芯能否通过外部短路和过充来大略区分等级。由于,电池爆炸前,如果内部有锂原子堆积在材料表面,爆炸威力会更大。而且,过充的防护常因消费者使用劣质充电器而只剩一道防线,因此,电芯抗过充能力比抗外部短路的能力更重要。

9.铝壳电芯与钢壳电芯安全性比较

铝壳相对于钢壳具有很高的安全优势

锂离子电池正、负极活性材内为何要加VGCF碳管?

1. 不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有20%膨胀收缩 率,而像LFP正极材料有6%膨胀收收率。当多次充放电中,其正、负活性材颗粒与颗粒之间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不再参与电极反应。因此循环使用寿命下降。VGCF碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活性材颗粒间之间隙,可藉由VGCF碳管架桥连接,电子与离子传输不会间断。

2.

由于VGCF碳管微结构是中空多管壁,可以让正、负电极吸纳更多的电解液, 使得锂离子可以顺利快速嵌入或脱嵌,因此,有利于高倍率充放电。

3. VGCF是高强度纤维状长径比大之材料,可增加电极板的可挠性,正极或负极活性材颗粒间之黏接力或与极板间之黏接力更强,不会因挠曲而龟裂掉粉。

4.VGCF本质是高导电高导热特性,正极活性材其导电性都不好,添加VGCF 以提高正极活性材的导电性,也提高正极或负极的导热系数,利于散热。

解剖电池时遇到些情况,下面罗列出来,不知道各位前辈对这些情况有何见解.

1.明明很容易断的正极片注液以后却变得柔软.?

2.正极片出现褶皱现象(内层)?

3.刚拆出来的负极片边缘和内层会是暗紫色,和极片中间部分颜色不一样.(中间是金黄色)?

4.为什么每次拆开的负极片头部(第一小片)会有很多白色物质,是不是锂,为什么在那里这么多.

5.为什么短路以后正极片上面有铜,是不是负极的铜被电解过来.而且为什么是在正极头部吸铜最多.

6.负极耳发黑,是不是短路现象.(大电流通过的遗迹)或者是负极石墨溶解?

7.观察正极料过量,是不是在负极片上滴水,看是否燃火.

答案搜索:(声明没有标准答案,以现场为主)

第一:极片充放电后已经反弹,肯定变软,通俗点,没那么死了.里面松了; 第二:那个是正常的~前面几圈卷饶时贴近卷针,肯定有折痕...除非你用非常厚的针,呵呵,这个不可能哦

第三:没充电灰色,半充暗紫色,满充金黄,那种情况自己想,提示:浸润程度; 第四:负极片头部(第一小片)会有很多白色物质,其他地方要是没有,就是你设计问题,是析锂;

第五:这个问题不清楚,不知道你那什么情况,是不是反充了,是整体还是部分,也有可能短路..

第六:负极耳发黑,看情况了,一般是短路,

第七:滴水谁给你教的? 没听过;正极料过量,负极很明显的,当然你要排除外因; 补充几点:

1.隔膜局部发黄或有黑点,是否曾经大电流通过,击穿隔膜.短路造成,可能是粉尘,也可能是你隔膜本来有孔,当然也有材料方面的可能;

2.在电池外包装时,点焊铆钉时电流不稳定或电流过大会使外露负极耳旁的隔膜烧坏,但高温胶是否会被烧掉.

这个还没见过,一般点焊是瞬间的,能量大到可以烧化里面的隔膜还真没见过,高温胶只是奈温高点,你要是有个1000度一样完蛋,爆炸的电池你可以看看,高温胶纸也成灰咧

关于充电电池

1.认识记忆效应

2.电池需要激活吗

3.前三次要充12小时吗

4.充电电池有最佳状态吗

5.真的是充电电流越大,充电越快吗

6.直充标的输出电流就等于充电电流吗

7.循环充放电一次就是少一次寿命吗

8.电池容量越高越好吗

9.充饱的电池进行存储好吗

10.座充的绿灯亮了以后在多充一个小时有用吗

11.座充充电比直充饱吗

1.认识记忆效应

电池记忆效应是指电池的可逆失效,即电池失效后可重新回复的性能。记忆效应是指电池长时间经受特定的工作循环后,自动保持这一特定的倾向。这个最早定义在镍镉电池,镍镉的袋式电池不存在记忆效应,烧结式电池有记忆效应。而现在的镍金属氢(俗称镍氢)电池不受这个记忆效应定义的约束。

因为现代镍镉电池工艺的改进,上述的记忆效应已经大幅度的降低,而另外一种现象替换了这个定义,就是镍基电池的“晶格化”,通常情况,镍镉电池受这两种效应的综合影响,而镍氢电池则只受“晶格化”记忆效应的影响,而且影响较镍镉电池的为小。

在实际应用中,消除记忆效应的方法有严格的规范和一个操作流程。操作不当会适得其反。

对于镍镉电池,正常的维护是定期深放电:平均每使用一个月(或30次循环)进行一次深放电(放电到1.0V/每节,老外称之为exercise),平常使用是尽量用光电池或用到关机等手段可以缓解记忆效应的形成,但这个不是exercise,因为仪器(如手机)是不会用到1。0V/每节才关机的,必须要专门的设备或线路来完成这项工作,幸好许多镍氢电池的充电器都带有这个功能。

对于长期没有进行exercise的镍镉电池,会因为记忆效应的累计,无法用exercise进行容量回复,这时则需要更深的放电(老外称recondition),这是一种用很小的电流长时间对电池放电到0.4V每节的一个过程,需要专业的设备进行。

对于镍氢电池,exercise进行的频率大概每三个月一次即可有效的缓解记忆效应。因为镍氢电池的循环寿命远远低于镍镉电池,几乎用不到recondition这个方法。

▲建议1:每次充电以前对电池放电是没有必要,而且是有害的,因为电池的使用寿命无谓的减短了。

▲建议2:用一个电阻接电池的正负极进行放电是不可取的,电流没法控制,

容易过放到0V,甚至导致串联电池组的电池极性反转。

2.电池需要激活吗?

回答是电池需要激活,但这不是用户的要做的事。我参观过锂离子电池的生产厂,锂离子电池在出厂以前要经过如下过程:

锂离子电池壳灌输电解液-封口-化成,就是恒压充电,然后放电,如此进行几个循环,使电极充分浸润电解液,充分活化,以容量达到要求为止,这个就是激活过程--分容,就是测试电池的容量选取不同性能(容量)的电池进行归类,划分电池的等级,进行容量匹配等。这样出来的锂离子电池到用户手上已经是激活过的了。我们大家常用的镍镉电池和镍氢电池也是如此化成激活以后才出厂的。其中有些电池的激活过程需要电池处于开口状态,激活以后再封口,这个工序也只可能有电芯生产厂家来完成了。

这里存在一个问题,就是电池厂出厂的电池到用户手上,这个时间有时会很长,短则1个月,长则半年,这个时候,因为电池电极材料会钝化,所以厂家建议初次使用的电池最好进行3~5次完全充放过程,以便消除电极材料的钝化,达到最大容量。

在2001年颁布的三个关于镍氢。镍镉和锂离子电池的国标中,其初始容量的检测均有明确规定,对电池可以进行5次深充深放,当有一次符合规定时,试验即可停止。这很好的解释了我说的这个现象。

★那么称之为“第二次激活”也是可以的,用户初次使用的“新”电池尽量进行几次深充放循环。

●然而据我的测试(针对锂离子电池),存储期在1~3个月之内的锂离子电池,对它进行深充深放的循环处理,其容量提高现象几乎不存在。(我在专题讨论区有关于电池激活的测试报告)

3.前三次要充12小时吗?

这个问题是紧扣上面的电池激活问题的,姑且设出厂的电池到用户手上有电极钝化现象,为了激活电池进行深充深放电循环3次。其实这个问题转化为深充是不是就是要充12个小时的问题。那么我的另一片文章《论手机电池的充电时间》已经回答了这个问题。

★★★答案是不需要充12小时。

早期的手机镍氢电池因为需要补充和涓流充电过程,要达到最完美的充饱状态,可能需要5个小时左右,但是也是不需要12个小时的。而锂离子电池的恒流恒压充电特性更是决定了它的深充电时间无需12个小时。

对于锂离子电池有人会问,既然恒压阶段锂离子电池的电流逐渐减小,是不是当电流小到无穷小的时候才是真正的深充。我曾经画出恒压阶段电流减小对时间的曲线,对它进行多次曲线拟合,发现这个曲线可以用1/x的函数方式接近与零电流,实际测试时因为锂离子电池本身存在的自放电现象,这个零电流是永远不可能到达的。

以600mAh的电池为例,设臵截至电流为0.01C(即6mA),它的1C充电时间

不超过150分钟,那么设臵截至电流为0.001C(即0.6mA),它的充电时间可能为10小时--这个因为仪器精度的问题,已经无法精确获得,但是从0.01C到0.001C获的容量经计算仅为1.7mAh,以多用的7个多小时来换取这仅仅的千分之三不到的容量是没有任何实际意义的。

何况,还有其它的充电方式,比如脉冲充电方式使锂离子电池来达到4.2V的限制电压,它根本没有截止最小电流判断阶段,一般150分钟后它就是100%充饱了。许多手机都是用脉冲充电方式的。

有人曾经用手机显示充饱后,再用座充进行充电来确认手机的充饱程度,这个测试方法欠严谨。

首先座充显示绿灯不是检测真正充饱与否的一个依据。

★★检测锂离子电池充饱与否的唯一最终的方法就是测试在不充电(也不放电)状态时的锂离子电池的电压。

所谓恒压阶段电流减小其真正的目的就是逐渐减小在电池内阻上因充电电流而产生的附加电压,当电流小到0.01C,比如6mA,这个电流乘与电池内阻(一般在200毫欧之内)仅为1mV,可以认为这时的电压就是无电流状态的电池电压。

其次,手机的基准电压不一定等于座充的基准电压,手机认为充饱的电池到了座充上,座充却不认为已经充饱,却继续进行充电。

4.充电电池有最佳状态吗?

有一种说法就是,充电电池使用得当,会在某一段循环范围出现最佳的状态,就是容量最大.这个要分情况,密封的镍氢电池和镍镉电池,如果使用得当(比如定期的维护,防止记忆效应的产生和累计),一般会在100~200个循环处达到其容量的最大值,比如出厂容量为1000mAh的镍氢电池用了120次循环后,其容量有可能达到1100mAh。几乎所有的日本镍氢电池生产商的技术规格书中描述镍基电池的循环特性的图上我都能看到这样的描述。

★镍基电池有最佳状态,一般在100~200循环次数之间达到其最大容量 对于液态锂离子电池,却根本不存在这样一个循环容量的驼峰现象,从锂离子电池出厂到最终电池报废为止,其容量的表现就是用一次少一次。我在对锂离子电池做循环性能的时候也从来没有看到过有容量回升的迹象。

★锂离子电池没有最佳状态。

值得一提的是,锂离子电池更容易受环境温度的变化而表现不同的性能,在25~40度的环境温度会表现其最好性能,而低温或高温状态,他的性能就大打折扣了。要使你的锂离子电池充分展现它的容量,一定要细心的注意使用环境,防止高低温现象,比如手机放在汽车的前台上,中午的太阳直射很容易就可以使其超过60度,北方的用户的电池待机时间,同等网络情况下,就没有南方的用户长了。

5.真的是充电电流越大,充电越快吗?

《论手机电池的充电时间》一文中已经讲了这个问题,对于恒流充电的镍基

本文来源:https://www.bwwdw.com/article/40t1.html

Top