常存杂质元素对钢材性能的影响

更新时间:2023-12-14 20:35:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

常存杂质元素对钢材性能的影响

普通碳素钢除含碳以外,还含少量锰(Mn)、硅(si)、硫(5)、确(P)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的.故称为杂质元素。现讨论这些杂质对钢性能的影响。 硫的影响 硫是炼钢时由矿石与燃料焦炭带到钢中来的杂质。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中。Fes和Fe形成低熔点(985℃)化合物。钢材的热加工温度-般在1150-1200℃以亡,故当钢材热加工时.由于FeS化合物的过早熔化而导致工件开裂,这种现象称为热脆。含硫量愈高,热脆现象愈严重,故必须对钢中含硫虽进行控制。高级优质钢;S≤0.02~0.03%,优质钢:s≤0.003%~0.045%;普通钢:S≤0.055%~0.7%以下。

压力容器专用钢材的磷含量(熔炼分析,下同)不应大于0.030%,硫含量不应大于0.020%。

铬不锈钢 在铬不锈钢中.起耐腐蚀作用的主要元素是铬。铬能在氧化性介质中生成一层稳定而致密的氧化膜,对钢材起保护作用、因而具耐蚀件。然而其耐蚀性的强弱取决于钢中的含碳量和含铬量。理论与实践研究证明,当含铬量大于11.7%时,钢的耐蚀性会有显著提高,而且含铬量愈多,耐蚀性愈好。由于钢中存在碳元素.碳能与铬形成铬的碳化物(如Cr23C6等),因而消耗了铬,致使钢中的有效铬含量减少.使钢的耐蚀性降低.故不锈纳中的含碳量都是较低的。为了确保不锈钢具有耐腐蚀性能,实际应用的不锈钢,其平均含铬量都在13%以上。常用的铬不锈钢有Icrl3、2crl3、0Cr13、ocrl7Ti等。

Ti: 加入Ti能提高抗高温高压H2-N2-NH3腐蚀的能力,与其它元素配合使用能提高钢抗大气、海水及H2S腐蚀能力。

Nb:一般与其它元素配合使用,籍以提高钢抗大气、海水、H2S及高温高压H2-N2-NH3腐蚀能力。 Mo:能提高钢的强度和高温强度(热强性和蠕变强度),防止钢的回火脆性,能提高钢抗H2S,NH3,CO,H2O,高温高压H2和弱还原酸腐蚀的能力。它与Cu,Cr配合,能提高抗大气腐蚀性能。

Mn:主要的强化元素,可熔入铁素体中,也可细化珠光体组织使其强化,提高钢的强度。Mn降低钢的抗腐蚀能力。在钢铁常规范围内Mn对钢的性能无显著影响。

钛和铌还有防止晶间腐蚀的功能,但不宜过量。钛和铌不仅是铁素体形成元素,而且由于吸收了奥氏体中固溶的碳、氮形成稳定化合物造成的成分变化,均降低了奥氏体的稳定性,促使铁素体形成。含钛钢的表面质量差,铌高易增加焊接裂纹倾向。

不锈钢水压试验时氯离子必须控制在25mg/L内,但如果设备物料中有有CL-,且≥25mg/L,改如何处理,选用什么材质?是对不锈钢进行热处理吗?

16MnR低碳钢即可, 不锈钢对Cl离子不管用。首先,消应力的热处理是没有必要的。可采用,降低物料的cl含量的办法;或减少cl聚集---抛光的办法解决。

双相钢不是复合钢板,双相不锈钢的固溶组织中铁素体和奥氏体相约各占一半,一般较少相的含量最少也需要达到30%。双相不锈钢综合了奥氏体不锈钢和铁素体不锈钢的特点,把奥氏体不锈钢的优良韧性和焊接性与铁素体不锈钢的高强度和耐氯化物应力腐蚀性能结合到一起。双相不锈钢在低应力下有良好的耐氯化物应力腐蚀性能,可取代在此介质条件下易发生应力腐蚀破裂的奥氏体不锈钢18-8型,可焊性好,焊后

不须热处理。由于目前我国双相钢的使用量相对较小,导致生产量不大,所以它的生产成本高。但随着我国推广双相钢的应用,它的成本也会逐渐下降。国内双相不锈钢生产批量及应用量最大的是2205型。 双相不锈钢广义为其组织主要由奥氏体相、铁素体相和马氏体相中任何两相所组成的不锈钢,通常所说的双相不锈钢是指奥氏体——铁素体双相不锈钢。它在一定程度上兼有奥氏体和铁素体的双相特性。奥氏体相的存在,降低了高铬铁素体不锈钢的脆性,防止了晶粒长大倾向,提高了韧性和可焊性;铁素体相的存在,提高了奥氏体不锈钢的室温强度、尤其是屈服强度和导热系数,降低线膨胀系数和焊接热裂纹倾向,同时大大提高钢的耐晶间腐蚀、抗氯化物应力腐蚀和腐蚀疲劳等性能。双相不锈钢并不一定两相成分相同,分铁素体基和奥氏体基两种。316L是超低碳不锈钢,相当于国内的00Cr17Ni14Mo2。由于碳含量的降低,能起到保护Cr的目的。

氯离子对不锈钢引起应力腐蚀的条件有两个:一个是介质中存在浓度高的氯离子;一个是不锈钢中存在应力。针对第一个条件,可采取降低介质中氯离子的办法。而对于钢材在制造、加工中产生的应力,一般在设备使用前都要进行去应力的热处理。若是在使用时钢材产生了内应力,而介质中也存在着浓度高的氯离子,那么钢材发生应力腐蚀的机会就非常大。

PS:双相不锈钢指的不是复合钢板,而是指钢材存在两相金属:铁素体、奥氏体或马氏体金属。根据设备工况条件可适当选用,而不是无论什么工况都要用上用途非常广泛的奥氏体不锈钢,要是这样的话,设备成本就会大大增加。

还原一个重要的腐蚀因素就是氧浓度,只有达到一定的氧浓度,应力腐蚀才可能产生 奥氏体不锈钢的晶间腐蚀

奥氏作不锈钢在450~850℃保温或缓慢冷却时,会出现晶问腐蚀。合碳量越高,晶间蚀倾向性越大。此外,在焊接件的热影响区也会出现 晶间腐蚀。这是由于在晶界上析出富Cr的Cr23C6。使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。这种晶间腐蚀现象在前面提到的铁 素体不锈钢中也是存在的。 工程上常采用以下几种方法防止晶间腐蚀: (1)降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本上解决了铬的碳化物(Cr23C6)在晶界上 析出的问题。通常钢中合碳量降至0.03%以下即可满足抗晶间腐蚀性能的要求。 (2)加入Ti、Nb等能形成稳定碳化物(TiC或NbC)的元素,避免在晶界上析出Cr23C6,即可防上奥氏体不锈钢的晶间腐蚀。 (3)通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁索体双相组织,其中铁素体占5%一12%。这种双相组织不易产生晶间腐蚀。 (4)采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。2.奥氏体不锈钢的应力腐蚀 应力(主要是拉应力)与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCC(Stress Crack Corrosion)。奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。当合Ni量达到8%一10%时,奥氏体不锈钢应力腐蚀倾向性最大,继续增加 含Ni量至45%~50%应力腐蚀倾向逐渐减小,直至消失。 防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si2%~4%并从冶炼上将N含量控制在0.04%以下。此外还应尽量减少P、Sb、Bi、As等杂质的含量 。另外可选用A-F双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。当初始的微细裂纹遇到铁素体相后不再继续扩展,体素体含量应在6%左右。3.奥氏作不锈钢的形变强化 单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或钢管。经过大量变形后,钢的强度大力提高 ,尤其是在零下温区轧制时效果更为显著。抗拉强度可达 2 000 MPa以上。这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。 奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。形变后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加 。并因部分γ->M转变而产生铁磁性,在使用时(如仪表

零件中)应予以考虑。再结晶温度随形变量而改变,当形变量为60%时,其再结晶温度降为650℃冷变形奥氏体不锈钢再结晶退火温度为850~1050℃,850℃则需保温3h,1050℃时 透烧即可,然后水冷。4.奥氏作不锈钢的热处理 奥氏体不锈钢常用的热处理工艺有:固溶处理、稳定化处理和去应力处理等。 (1)固溶处理。将钢加热到1050~1150℃后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到室温 ,这样钢的耐蚀性会有很大改善。如上所述,为了防止晶问腐蚀,通常采用固溶化处理,使Cr23C6溶于奥氏体中,然后快速冷却。对于薄壁件可采用空冷 ,一般情况采用水冷。 (2)稳定化处理。一般是在固溶处理后进行,常用于含Ti、Nb的18-8钢,固处理后,将钢加热到850~880℃保温后空冷 ,此时Cr的碳化物完全溶解,脱而钛的碳化物不完全溶解,且在冷却过程中充分析出,使碳不可能再形成格的碳化物,因而有效地消除了晶间腐蚀。 (3)去应力处理。去应力处理是消除钢在冷加工或焊接后的残余应力的热处理工艺一般加热到300~350℃回火。对于不 含稳定化元素Ti、Nb的钢,加热温度不超过450t,以免析出铬的碳化物而引起晶间腐蚀。对于超低碳和合Ti、Nb不锈钢的冷加工件和焊接件,需在500~950℃,加热 ,然后缓冷,消除应力(消除焊接应力取上限温度),可以减轻晶间腐蚀倾向并提高钢的应力腐蚀抗力。四、奥氏体-铁素体双相不锈钢 在奥氏作不锈钢的基础上,适当增加Cr含量并减少Ni含量,并与回溶化处理相配合,可获得具有奥氏体和铁素体的双相组织( 含40~60%δ-铁素体)的不锈钢,典型钢号有0Cr21Ni5Ti、1Cr21Ni5Ti、OCr21Ni6Mo2Ti等。双相不锈钢与里氏体不锈钢相比有较好的焊接性,焊 后不需热处理,而且其晶间腐蚀、应力腐蚀倾向性也较小。但由于含Cr量高,易形成σ相,使用时应加以注意。

液氨储罐设计压力\\温度\\腐蚀裕量\\如何确定,其液氨为中度危害,还是高度.应力腐蚀又是怎么回事? 液氨为中度危害应力腐蚀是拉应力与腐蚀介质联合作用而引起的低应力脆性断裂称为应力腐蚀。 涉及选材等问题可参阅 容规130页;液氨应力腐蚀环境的确定: a,介质为液态氨,含水量不高(不小于0.2%),且可能受到空气(氧气或者二氧化碳)污染的场合;b, 使用温度高于零下5度; 中度危害,技术要求中应有\焊后热处理及焊缝硬度要求\材料可为20R或16MnR,腐蚀裕量2mm, 就是制作完毕后进行整体热处理。

1.氢脆:钢材中的氢会使材料的力学性能脆化,这种现象称为氢脆。钢中氢的来源主要为下列三个方面:冶炼过程中溶解在钢水中的氢,在结晶冷凝时没有能即时逸出而存留在钢材中;焊接过程中由于水分或油污在高弧高温下分解出的氢溶解入钢材中;设备运行过程中,工作介质中的氢进入钢材中。当钢中存在氢,而应力大于某一临界值时,就会发生氢脆断裂。氢对钢材的脆化过程是一个微观裂纹在高应力作用下的扩展过程。脆断应力可低达屈服极限的20%。钢材的强度愈高(所承受的应力愈大),对氢脆愈敏感。容器中的应力水平,包括工作应力及残余应力是导致氢脆很重要的因素。氢脆是一种延迟断裂,断裂迟延的时间可以仅几分钟,也可能几天。氢脆断裂只发生在-100~150℃的温度范围内,很低的温度不利于氢的移动和聚集,不易发生氢脆,而较高的温度可以使氢从钢中逸出,减少钢中的氢浓度,从而避免脆化。焊后保温及热处理就是利用高温下氢能从钢中扩散逸出的原理,用来降低焊缝中氢含量,它是改善焊接接头力学性能的有效措施。氢对钢铁材料的危害性较大,由于氢而导致材质劣化的现象统称为氢损伤,氢损伤的形式有很多种,除了氢脆以外,还有因氢在钢板分层处聚集引起的氢鼓泡;氢在钢材中心部位聚集造成的细微裂纹群,称为白点;以及钢在高温高压氢作用下,(对碳钢,温度大于250℃,氢分压大于2MPa),其组织发生脱碳,渗碳体分解,沿晶界出现大量微裂纹,钢的强度、韧性丧失殆尽的氢腐蚀现象等。 2.苛性脆化

苛性脆化是由于介质内具有含量很高的苛性钠(NaOH)促使钢材腐蚀加剧而引起的脆化现象。其破坏形式是在肉眼看到的主裂纹上有大量肉眼看不到的分枝细裂纹。元件发生苛性脆化时,裂纹附近的钢材仍具有良好的塑性及脆性性能。苛性脆化一般都发生在受压元件的铆接及胀接处。

3.应力腐蚀脆性断裂

由拉应力与腐蚀介质联合作用而引起的低应力脆性断裂称为应力腐蚀。不论是塑性材料还是脆性材料都可能发生应力腐蚀,它与单纯的由应力造成的破坏或由腐蚀引的破坏不同,在一定的条件下在很低的应力水平或腐蚀性很弱的介质中,也能引起应力腐蚀。应力腐蚀所引起的破坏在事先往往没有明显的变形预兆,突然发生脆性断裂,故它的危害性很大。应力腐蚀的速度一般在10-3mm/h的范围内,大于通常的腐蚀速度(10-4mm/h),比单纯由应力产生的断裂速度较小些。应力腐蚀只有在特定条件下才会发生:

(a)、元件承受拉应力的作用。拉应力可由外界因素产生,也可由加工过程中产生。一般来说,只需具有很小的拉应力即可能引起应力腐蚀。,

(b)、具有与材料种类相匹配的特定腐蚀介质环境。每种材料只在某些介质中才会发生应力腐蚀,而在另一些介质中不发生应力腐蚀。例如普通钢材会发生应力腐蚀的介质为:氢氧化物溶液、含有硝酸盐、碳酸盐、氰酸盐或硫化氢的水溶液、海水、硫酸--硝酸混合液、液氨等。奥氏体不锈钢会发生应力腐蚀的介质为:酸性及中性的氯化物溶液、海水、热的氟化物溶液及氢氧化物溶液等。碳钢和低合金钢焊制的压力容器最常见的应力腐蚀环境包括:湿H2S环境,液氨环境以及NaOH溶液。而奥氏体不锈钢压力容器最常见的应力腐蚀是氯离子引起的。

(c)、材料应力腐蚀的敏感性对钢材来说,应力腐蚀的敏感性与钢材成分、组织及热处理等情况有关。

GB151标准中换热器壳体最小厚度由以下因素决定

1、换热器壳体最小厚度的确定主要是考虑使壳题具有足够的刚性,减小变形,以利于管板和管束的安装。尤其是浮头式和U形管式换热器的壳体,因为无管板的自持作用又需要拆卸,故保证一定的厚度更有必要。

2、对叠摞状态使用的卧式换热器,其鞍座及接管都会对壳程圆筒产生较大的局部应力。,为此也许适当增加壳体的最小厚度。

3、适当增大壳程圆筒的最小厚度,也有利于对管程设计压力较高的换热器在壳程进行管接头的泄漏试验。

1.当压力-0.1

4.当属于1,2时压力等级高于设计压力;属于3时,压力等级要1.6MPa级以上. 5.属于标准规定的压力等到级相应的标准规定选取.

6.属于1,2条时,紧固件螺栓,螺母以及螺柱一般可选用商品级;属于3条时,则用螺柱且要高强度组合 7.设备法兰紧固件用螺柱,设备内部用紧固件一般用不锈钢材料

8.属于1,2条时,可根据介质情况选用非金属垫片;属于3条时,选用金属缠绕垫 ”7.设备法兰紧固件用螺柱,设备内部用紧固件一般用不锈钢材料 。“

8.属于1,2条时,可根据介质情况选用非金属垫片;属于3条时,选用金属缠绕垫 1.一般选用PL法兰,无特殊要求时 3.介质为易燃易爆时一般选用SO型法兰 4.介质为高度危害时一般选用WN型法兰

5.设备法兰紧固件用螺柱,设备内部用紧固件一般用不锈钢材料, 这个要看介质,如果纯碳钢设备也用不锈钢的话,好是好,但不经济 设备法兰紧固件用螺柱,这个不一定,小设备有的也用螺栓 热处理的一些知识

热处理残余力是指工件经热处理后最终残存下来的应力,对工件的形状,&127;尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,&127;便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 一、钢的热处理应力

工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的作用下最终使工件表层受压而心部受拉。这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀,&127;工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度,形状,材料的化学成分等因素有关。

实践证明,任何工件在热处理过程中,&127;只要有相变,热应力和组织应力都会发生。&127;只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,&127;就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。&127;组织应力占主导地位时的作用结果是工件心部受压表面受拉。 二、热处理应力对淬火裂纹的影响

存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(&127;尤其是在最大拉应力下)才会表现出来,&127;若在压应力场内并无促裂作用。 淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对淬火裂纹赋于重要乃至决定性影响的因素。为了达到淬火的目的,通常必须加速零件在高温段内的冷却速度,并使之超过钢的临界淬火冷却速度才能得到马氏体组织。就残余应力而论,这样做由于能增加抵消组织应力作用的热应力值,故能减少工件表面上的拉应力而达到抑制纵裂的目的。其效果将随高温冷却速度的加快而增大。而且,在能淬透的

(3)流体连接间接式换热器。把两个表面式换热器由在其中循环的热载体连接起来的换热器。 (4)直接接触式换热器。是两种流体直接接触进行换热的设备。 c.按结构和材料可分为:

(1)管壳换热器。套管式、管壳式、沉浸式、喷淋式、翅片式。

(2)板式换热器。夹套式、平板式、板式、螺旋板式、翅片板式、板壳式。 (3)新型材料换热器。石墨、聚四氟乙烯、玻璃钢、钛材、锆材换热器。 (4)热管式换热器。多室回转式、离心式、重力热管式、离心热管式。

换热器壳程介质为29.5%的Ca2cl水溶液,与其接触的换热器的另、部件的用材该如何选用(采用何种防腐措施)。壳程设计温度为-35度,设计压力为1.2MPa。

此工况用碳钢没问题,腐蚀裕度取大一些。最好不用不锈钢,防止氯点腐蚀。

氯化钙浓度小于10%时,碳钢的使用温度为小于等于100℃;浓度为20%~70%时,碳钢的使用温度为小于等于50℃;浓度为100%时,碳钢的使用温度为小于等于320℃。

不锈钢洗涤及保养 不锈钢的使用随着经济的发展变得更加广泛,人们在日常生活中与不锈钢息息相关,但是很多人对不锈钢的性能认识不多,对不锈钢的维护保养就知道得更少了。很多人以为不锈钢是永不生锈的,其实,不锈钢耐腐蚀性良好。原因是表面形成一层钝化膜,在自然界中它以更稳定的氧化物的形态的存在。也就是说,不锈钢虽然按使用条件不同,氧化程度不一样,但最终都被氧化,这种现象通常叫做腐蚀。裸露在腐蚀环境中的金属表面全部发生电化反应或化学反应,均匀受到腐蚀。不锈钢表面钝化膜之中耐腐蚀能力弱的部位,由于自激反应而形成点蚀反应,生成小孔,再加上有氯离子接近,形成很强的腐蚀性溶液,加速腐蚀反应的速度。还有不锈钢内部的晶间腐蚀开裂,所有这些,对不锈钢表面的钝化膜都发生破坏作用。因此,对不锈钢表面必须进行定期的清洁保养,以保持其华丽的表面及延长使用寿命。 清洗不锈钢表面时必须注意:不发生表面划伤现象,避免使用漂白成分以及研磨剂的洗涤液,钢丝球、研磨工具等,为除掉洗涤液,洗涤结束时再用洁净水冲洗表面。

不锈钢表面有灰尘以及易除掉污垢物的,可用肥皂,弱洗涤剂或温水洗涤。

不锈钢表面的商标、贴膜,用温水,弱洗涤剂来洗,粘结剂成份,使用酒精或有机溶剂(乙醚、苯)擦洗。 不锈钢表面的油脂、油、润滑油污染,用柔软的布擦干净,以后用中性洗涤剂或氨溶液或用专用洗涤剂清洗。

不锈钢表面有漂白剂以及各种酸附着,立即用水冲洗,再用氨溶液或中性碳酸苏打水溶液浸洗,用中性洗

涤剂或温水洗涤。

不锈钢表面有彩虹纹,是过多使用洗涤剂或油引起,洗涤时用温水中性洗涤剂可洗去。 不锈钢表面污物引起的锈,可用不锈钢酸洗钝化膏洗涤。

只要我们使用正确的保养方法,就能延长不锈钢的使用寿命,保持其洁净、明亮、华丽的气派

本文来源:https://www.bwwdw.com/article/z0m5.html

Top