Review 2014-11 CELL Integrative Biology of Exercise - 图文

更新时间:2023-12-19 00:54:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Review

IntegrativeBiologyofExercise

JohnA.Hawley,1,2,*MarkHargreaves,3MichaelJ.Joyner,4andJuleenR.Zierath5,6,*

LeadingEdge

&NutritionResearchGroup,SchoolofExerciseSciences,AustralianCatholicUniversity,Fitzroy,Victoria3065,AustraliaInstituteforSportandExerciseSciences,LiverpoolJohnMooresUniversity,MerseysideL35UA,UK

3DepartmentofPhysiology,TheUniversityofMelbourne,Parkville,Victoria3010,Australia4DepartmentofAnesthesiology,MayoClinic,Rochester,MN55905,USA5DepartmentofMolecularMedicine,KarolinskaInstitutet,vonEulersva¨g4a,17177Stockholm,Sweden

6TheNovoNordiskFoundationCenterforBasicMetabolicResearch,FacultyofHealthandMedicalSciences,UniversityofCopenhagen,2200Copenhagen,Denmark

*Correspondence:john.hawley@acu.edu.au(J.A.H.),juleen.zierath@ki.se(J.R.Z.)http://dx.doi.org/10.1016/j.cell.2014.10.029

2Research

1Exercise

Exerciserepresentsamajorchallengetowhole-bodyhomeostasisprovokingwidespreadpertur-bationsinnumerouscells,tissues,andorgansthatarecausedbyorarearesponsetotheincreasedmetabolicactivityofcontractingskeletalmuscles.Tomeetthischallenge,multipleintegratedandoftenredundantresponsesoperatetobluntthehomeostaticthreatsgeneratedbyexercise-inducedincreasesinmuscleenergyandoxygendemand.Theapplicationofmoleculartechniquestoexercisebiologyhasprovidedgreaterunderstandingofthemultiplicityandcomplexityofcellularnetworksinvolvedinexerciseresponses,andrecentdiscoveriesofferperspectivesonthemech-anismsbywhichmuscle‘‘communicates’’withotherorgansandmediatesthebene?cialeffectsofexerciseonhealthandperformance.

Introduction

SuperiorlocomotiveabilitywasonceessentialforhumansurvivalandafundamentalreasonthatHomosapiensevolvedandprospered.Physicalactivitywasobligatoryforevadingpredatorsandfoodprocurement.Evolutionarytheorydescribesthemechanismofnaturalselectionas‘‘survivalofthe?ttest,’’theunderlyingsuppositionbeingthatthe‘‘?t,’’asopposedtothe‘‘un?t,’’hadagreaterlikelihoodofsurvival.Moderndayhumansrunfaster,jumphigher,andarestrongerthanatanytimeinhis-tory.Yetexercise,particularlywhenundertakentoanindivid-ual’smaximum,isacomplexprocessinvolvingthesynchronizedandintegratedactivationofmultipletissuesandorgansatthecellularandsystemiclevel.Thoughthereductionistapproachofdissectingbiologicalsystemsintotheirconstituentpartshasbeenvaluableinexplainingthebasisofmanybiochemicalpro-cesses,forexercisebiologists,thisapproachhasseverelimita-tions:theintegrativebiologyofexerciseisextremelycomplexandcanbeneitherexplainednorpredictedbystudyingtheindi-vidualcomponentsofvariousentities.

Exerciserepresentsamajorchallengetowhole-bodyhomeo-stasis,andinanattempttomeetthischallenge,myriadacuteandadaptiveresponsestakeplaceatthecellularandsystemiclevelsthatfunctiontominimizethesewidespreaddisruptions.Previousreviewshaveconsideredthemetabolicresponsestoexerciseandthecellularmechanismsthatunderpinskeletalmuscleadaptationtoexercisetraining(Bassel-DubyandOlson,2006;CoffeyandHawley2007;EganandZierath,2013;Hop-peleretal.,2011).Here,wehighlightthatvoluntary,dynamic,whole-bodyexerciseprovokeswidespreadchangesinnumerouscells,tissues,andorgansthatarecausedbyorarearesponsetotheincreasedmetabolicactivityofcontracting

skeletalmuscle.Tomeetthischallenge,multipleintegratedandredundantresponsesoperatetobluntthehomeostaticthreatsgeneratedbytheincreasedenergyandO2demand.Inthis‘‘muscle-centric’’viewofexercise,thesystemic(cardiovas-cular,respiratory,neural,andhormonal)responsesareviewedas‘‘servicefunctions,’’supplyingthecontractingmuscleswithfuelandO2tosustainagivenlevelofactivity.Thefundamentalpremiseisthatmultiscaleandredundantresponsessimulta-neouslyoperatetobluntthemanychallengestowhole-bodyho-meostasiscausedbythedemandsofthecontractingmuscles.Theapplicationofmolecularbiologytechniquestoexercisebiologyhasprovidedabetterunderstandingofthemultiplicityandcomplexityofcellularpathwaysinvolvedintheseexerciseresponses.Recentdiscoveriesofferperspectivesontheroleplayedbyskeletalmuscleinnumeroushomeostaticprocessesandonthemechanismsbywhichmuscle‘‘communicates’’withotherorganssuchasadiposetissue,liver,pancreas,bone,andbrain.

WhyStudyExercise?

Thereareseveralbroadreasonstostudyexercise.Hypothesesgeneratedoverthelasttwodecadesfromcomparativephysiol-ogists(Hochachkaetal.,1999)andanthropologists(BrambleandLieberman,2004)suggestthatthecombinedtraitsofsupe-riorendurancecapacityandanimpressiveabilitytothermoreg-ulatepermittedancestralhumansfromthehighplainsofEastAfricatosucceedasgamehuntersandtherebyobtainhigh-pro-teinsourcesoffoodthatwereessentialfortheemergenceoflargerbrainsandcomplexcooperativebehavior.Humanskeletalmuscles,limbs,andthesupportingventilatory,cardiovascular,andmetabolicsystemswerewellsuitedforuprightlocomotion,

738Cell159,November6,2014a2014ElsevierInc.

witheconomyofmovementforbipedalwalkingandrunningfarexceedingthatofotherprimates(BrambleandLieberman,2004;Brooks,2012).Atthistime,lifestyleandenergyavailabilitywereinextricablylinkedtotheperiodiccyclesoffeastsandfamines,withcertaingenesevolvingtoregulateef?cientstorageandutilizationofendogenousfuelstores,theso-called‘‘thriftygenes’’(Neel,1962).ExpandingonNeel’soriginalconcept,sur-vivalduringfeast-faminecyclesthroughoutthehunter-gathererperiodwasaccompaniedbytheselectionofgenesandtraitstosupporta‘‘physicalactivitycycle’’(Boothetal.,2002;Chak-ravarthyandBooth,2004),andundertheseconstraintsmostofthepresenthumangenomeevolved.Duringmoderntimes,thoseallelesandtraitsthatevolvedforenergystorageandlocomotionarenowexposedtoaninactivelifestyleandaccesstoenergy-densefoodsoveranextendedlifespan,therebyincreasingtheriskofchronicdisease.Therefore,the?rstreasontostudyexerciseistoprovideinsightintothepathogenicpro-cessesunderpinningthenumerouscontemporaryphysicalinactivity-mediateddisorders.

Therecentemergenceofnoncommunicablediseasesasma-jorkillersinindustrializednations(Baueretal.,2014)andtheroleofphysicalactivityinpreventingand/ortreatingtheseconditionsisasecondreasontostudyexercise.Asedentarylifeisnowsoprevalentthatithasbecomecommontorefertoexerciseashav-ing‘‘healthybene?ts’’eventhoughtheexercise-trainedstateisthebiologicallynormalcondition.Itisalackofexercisethatisabnormalandcarrieshealthrisks(BoothandLees,2006).Phys-icalinactivityincreasestheincidenceofatleast17unhealthyconditionsandrelatedchronicdiseases(Boothetal.,2000),whereasalowexercisecapacityisanindependentpredictorofall-causemortality(Blairetal.,1996;Myersetal.,2002)andmorbidity(Willisetal.,2012).Yetexerciseinbothbiologicalresearchandasprimarypreventativetherapycontinuestobeundervaluedandunderutilizedbythescienti?candmedicalcommunities.Consequently,athirdreasontostudyexerciseistodeterminetheprecisemechanismsbywhichitpromoteswhole-bodyhealthandtoestablishmolecularlinksbetweenspeci?cexerciseinterventionsanddiseaseprevention.Althoughthelastdecadehasseenmajoradvancesinunravelingthemechanism(s)bywhichcellular,molecular,andbiochemicalpathwaysareaffectedbyexercise,theunderstandingofhowtheseeffectsarelinkedtohealthbene?tsisstilllacking.Inthiscontext,epidemiologicalevidencesuggeststhatonlyhalfoftheprotectiveeffectsofexercisecanbeexplainedonthebasisoftraditionalriskfactorslikereductionsinbloodpressure(BP)andbloodlipids(JoynerandGreen,2009).

Afourthreasontostudyexerciseistounderstandthecapacityofvariousmammalianspeciestofunctioninextremeenviron-mentsandtotesthypothesesaboutphysiologicalregulationundersuchconditions.Inthiscontext,humansarecompetentathletes,butourcapacityforlocomotionispaltrycomparedwiththatofotherspeciesthataremorepowerfulandfasterandpossessgreaterendurance.Withrespecttospeed,thecheetah(Acinonyxjubatus)reignssupremeamongterrestrialmammals,achievingmaximumvelocitiesof113km/hr(Sharp,1997),makingtheworld’sfastesthuman(withatopspeedof48km/hr)seemratherpedestrian.Thepronghornantelope(Anti-locapraAmericana)cansustainspeedsof>80km/hrfor4–5km,

andtheGreyhoundandsleddogaresimilarlycapableofextraor-dinaryburstsofspeed(PooleandErickson,2011).Notwith-standingsuchcomparisons,researchintothe‘‘limits’’ofathleticcapacityprovidesinsightintotherolesofvariousorgansystemsinvolvedinmaximizinghumanperformance(JoynerandCoyle,2008).Suchenquiryisnotnew.In1925,NobelLaureateA.V.Hillpublishedapaperonthephysiologicalbasisofathleticre-cords(Hill,1925)andwasthe?rsttodescribetheconceptofanindividual’smaximumoxygenuptake(VO2max)asanindexofthehighestenergydemandthatcanbemetaerobicallywhileexercising.Hillproposedthatanindividual’sVO2maxwasthesin-glebestmeasureofcardio-respiratoryperformanceandcouldbeusedforquantifyingtheadaptationofmanyorgansystemstophysicalactivityorinactivity(Bassett,2002).Perhaps?ttingly,thetestforVO2maxfortheassessmentofathleticpotentialorig-inallyproposedbyHillisnowrecognizedasabetterpredictorofmortalitythananyotherestablishedriskfactororbiomarkerforcardiovasculardisease(Myersetal.,2002).Clearlythebiologyunderlyingmaximalexerciseperformanceconfersadvantagesbeyondtheathleticarena!

VoluntaryExercise:MoreThanMuscleContractionWhatWeMeanWhenWeTalkaboutExercise

Exerciseisthevoluntaryactivationofskeletalmuscleforrecre-ational,sporting,oroccupationalactivities.Thedistinctionbe-tweenvoluntary,whole-bodyinvivoresponsestoexerciseversusthoseevokedbyotherexperimentalmodelsisimportant.Exvivoelectricalstimulationofanisolatedskeletalmuscle,forinstance,evokesanactionpotentialand‘‘contraction’’andtrig-gersintracellularpathwayswithputativerolesintrainingadapta-tion(FittsandHolloszy,1978).However,whole-body,voluntaryexerciseinducesarangeofadditionalphysiologicalresponsesthatarecriticalformuscleperformance(andmovement).Accordingly,manyeffectsobservedinanimalsandisolatedsys-temsfrequentlydifferfromthoseseeninhumansinvivo,andcareshouldbetakenwhenextrapolatingresponsesfromonesetofconditionsoragivenexperimentalmodeltoanother(SchlegelandStainier,2007).

Voluntaryexerciseencompassesmanyelementsbeyondsimplemusclecontraction.Volitionaleffortgeneratedinthemo-torcortexofthebraindrivesthespinalcordtorecruitmotorunits,resultinginspeci?cmovementpatterns.Inparallelwithneuralsignalstoskeletalmuscle,therearealsopowerfulneuralfeedforwardsignalstothecardiovascular,respiratory,andmetabolicandhormonalsystems,alongwithneuralfeedbackfromthecontractingskeletalmuscles,thatgenerallypermitmetabolicdemandstobemetwithlimiteddisruptionofhomeo-stasis(Figure1).

Numerousissuesrelatingtothespeed,force,duration,andin-tensityofmusclecontractions,alongwiththetotalmusclemassengagedintheactivity,areimportantforacompleteunderstand-ingofthephysiologicalresponsestoexercise.Anisometricorstaticcontractionofhighforcebutshortdurationcompressesbloodvesselsinthecontractingmusculatureandlimitsblood?owandO2deliverytothosemuscleswhilesimultaneouslyincreasingBP.Incontrast,duringsustainedrhythmicexerciselikecyclingorrunning,thecontractiontimesareshort,thereislittledisruptionofmuscleblood?ow,andperturbationsinBP

Cell159,November6,2014a2014ElsevierInc.739

Figure1.ThePhysiologicalResponsestoVoluntary,DynamicExercise

Multipleorgansystemsareaffectedbyexercise,initiatingdiversehomeostaticresponses.

areminimized.Themusclemassengagedinexerciseiscritical,asitdeterminesboththeabsoluteO2?uxandtotalfuelrequire-ments.Formostaerobic-basedactivities,suchasrunningorcycling,activemusclemassamountsto??15kgina70kgathlete(Coyleetal.,1991),althoughforrowingandcross-countryskiing(forwhichtheathleteissubstantiallytallerandheavier),thisismarkedlyhigher(Hagerman1984).Thenomenclaturerelatingtothequanti?cationofexerciseintensityisalsorelevantbecausetheprevailingworkrateexertsamajorroleindeterminingtheoverallphysiologicalresponsestoexercise.Forexerciselasting>5min,intensityistypicallyexpressedasapercentageofanin-dividual’sVO2max.Low-,moderate-,andhigh-intensityexercisecorrespondto<45%,45%–75%,and>75%ofindividualVO2max,respectively.

SkeletalMuscleEnergyMetabolism

ATPisrequiredtofuelthecellularprocessessupportingmusclecontraction.Theseincludethemaintenanceofsarcolemmalexcitability(Na+/K+ATPase),reuptakeofCa2+intothesarco-plasmicreticulum(Ca2+ATPase),andforcegenerationviaactin-myosincross-bridgecycling(myosinATPase).Intramus-cular[ATP]isremarkablywellmaintainedoverawiderangeofexerciseintensitiesanddurations,andwhile[ATP]declinesundercertainexerciseand/orenvironmentalconditions,themagnitudeofchangeissmallwhenconsideredagainstthetotalturnoverofATPwithinactivemyocytes.Duringsprintexercise,ATPturnovercanincrease100-foldaboverest(Gaitanosetal.,1993;Parolinetal.,1999),arangeofmetabolicactivityexceedingthatinallothertissuesandonethatposesamajorenergeticchallengetothecontractingmyo?bers.Giventhatintramuscular[ATP]isrelativelysmall,metabolicpathwaysresponsibleforATPresynthesisarerapidlyactivated.Duringshort-term(??30–60s)maximalexercise,thisisachievedprimar-ilythroughsubstrate-levelphosphorylationviathebreakdownofcreatinephosphateandduringtheconversionofglucoseunits,derivedalmostentirelyfromintramuscularglycogen,tolactate(Gaitanosetal.,1993;Parolinetal.,1999).Themobilizationofextramuscularsubstratesisalsocriticaltomaintainskeletalmusclemetabolismduringprolongedexercise(vanLoonetal.,2005;Wasserman,2009).Thus,theliverincreasestherelease

740Cell159,November6,2014a2014ElsevierInc.

ofglucoseintothecirculation(initiallyderivedfromglycogenolysisandlaterfromgluconeogenesis),andtheadipo-cyteincreasesthehydrolysisofitstriglyc-eridestoresandthereleaseoflong-chainnonesteri?edfattyacidsintotheblood-stream.

Therelativecontributionofcarbohy-drateandlipidtooxidativemetabolismisdeterminedprimarilybytheprevailingexerciseintensity(Romijnetal.,1993)andisin?uencedbypriordiet,trainingstatus,sex,andenvironmentalcondi-tions(Jeukendrup2003).Thecontributionfromtheoxidationofcarbohydrate-basedfuelsriseswithincreasingexerciseinten-sity,withaconcomitantreductioninlipidoxidation.Conversely,duringprolongedexerciseata?xedlevelofmoderateintensity,ratesofcarbohydrateoxidationdeclineaslipolysisandfatoxidationincrease.Theregulationoffuelmobilizationandutiliza-tioninvolvesacombinationoflocalfactorssuchassarcoplasmic[Ca2+],intramuscularlevelsofATPbreakdownproducts(ADP,AMP,IMP,Pi),andmuscletemperatureandintramuscularsub-strateavailability,aswellassystemicfactorssuchastheplasmalevelofkeyhormones(epinephrine,insulin,andglucagon)andcirculatingmetabolites(Hawleyetal.,2006).Thesefactorsarenotonlyinvolvedinmediatingtheacuteresponsetoexercise,butalsoactivatesignalingpathwayscriticalformanyofthechronicadaptationstoregularexercisetraining.Recentreviewshavesummarizedthevariouscellularandmolecularfactorsinvolvedintheregulationofskeletalmusclecarbohydrate(Jen-senandRichter,2012;RichterandHargreaves,2013)andlipid(JeppesenandKiens,2012)metabolismduringexercise,aswellastheinteractionsbetweenthem(Spriet,2014).OxygenTransportSystem

Atrest,whole-bodyO2consumptioninhealthy,young,adulthumansaveragesabout3.5ml/kg/min,with??20%–25%ofthisusedbyrestingskeletalmuscle.Thus,fora70kgperson,restingO2consumptionis??250ml/min,with50ml/mintakenupbyskeletalmuscle.Inlean,healthy,untrainedadults,VO2maxistypically10–15timesrestingvalues.Ineliteendurance-trainedathletes,VO2maxvaluescanexceed85ml/kg/min(Saltinand?strand,1967).ThoughO2?uxesinhumansarehigh,theyareA

marginalcomparedtovaluesachievedbyeliteracehorseswithVO2maxvaluesof110l/min,equatingto220ml/kg/min(PooleandErickson,2011).

VO2maxisdeterminedbythecombinedcapacitiesofthecen-tralnervoussystemtorecruitmotorunits,thepulmonaryandcardiovascularsystemstodeliverO2tocontractingskeletalmuscles,andtheabilityofthosemusclestoconsumeO2intheoxidative,metabolicpathways.AssociatedwithlargeincreasesinO2consumptionduringmaximalexerciseinhumansarepeakvaluesforcardiacoutput(Q)andventilationof40and200l/min,

Figure2.ComplexandRedundantPhysio-logicalControlMechanismsduringVolun-tary,DynamicExercise

Motorcorticaldriveleadstoskeletalmusclecontraction,aswellasparallelactivation(‘‘centralcommand’’)ofkeyneuro-endocrineresponses,fuelmobilization,andsupportsystemsthatin-creaseoxygenandsubstratedeliverytocon-tractingskeletalmuscle.Theintegratedresponseis?ne-tunedbyafferentfeedback,involvingme-chano-andchemo-sensitivetypeIIIandIVaffer-entsinactiveskeletalmuscle,butalsobycriticalsensorsthatmonitorvariousparameters,includingmeanarterialbloodpressure(MAP),bloodglucoseconcentration,oxygenandcarbondioxidelevels,bodytemperature,andbloodvolume.

representing8-and20-foldincreases,respectively,aboverest.Inaddition,blood?owtoactiveskeletalmusclecanincrease??100timesabovebasallevels,accountingforupto80%–90%ofQ.Notably,thereisonlyamodest(??20%)increaseinmeanarterialbloodpressure(MAP),whereasvaluesforarterialPO2,PCO2,andpHremainessentiallyidenticaltorestuntilmaximalexerciseintensitiesarereached.

Thecardiovascularadjustmentstoexerciserequireanintactautonomicnervoussystemandaredrivenbythreesignals:(1)feedforward‘‘centralcommand’’relatedtomotoroutput,whichactivateselectedareasinthebrainstemcardiovascular(andres-piratory)centerstostimulateincreasesinheartrate(HR),BP,andventilation;(2)afferentfeedbackfromthinlymyelinatedandunmyelinatedtypeIIIandIVafferentsincontractingmusclesthatincreasesympatheticactivation;and(3)baroreceptorsinthecarotidsinusandaorticarchthatprovidefeedbackonBPtothebrainstemcardiovascularcenters.TheHRresponsetoex-erciseisdrivenprimarilybycentralcommand-mediatedvagalwithdrawalandactivationofsympatheticout?owtotheheart.Bothfactorsalsoaugmentcardiacstrokevolume,andtheactionoftheso-called‘‘musclepump’’ensuresthatvenousreturnfromtheactivemusclevasculaturemaintainsdiastolic?llingandstrokevolume(SV).Thecentralmotordriveandcentralcom-mandaresubjectto‘‘?ne-tuning’’viafeedbacksignalsthatmonitorsubstratelevels,MAP,bloodgasesandpH,?uidstatus,andbodytemperaturedespitethemarkedho-meostaticchallengesassociatedwithhigh-intensityexercise(Figure2).

Theprimarymechanismresponsibleforskeletalmusclehy-peremiaduringexerciseisvasodilationintheactiveskeletalmuscle,mostnotablyinthesmallarterioles.Mechanical,neu-ral,andhumoralfactors,includingthosereleasedfromcon-tractingskeletalmuscle,havebeenimplicatedinthisresponse.Becausetheriseinmuscleblood?owiscloselycoupledtometabolicrate,vasodilatingsignal(s)releasedfromcontractingskeletalmusclesroughlyinproportiontotheirO2demandis(are)responsible(Hellstenetal.,2012).Candidatedilatorsub-stancesandmechanismsincludeinwardrectifyingK+chan-nels,adenosine,ATPfromvarioussources,productsofskeletalmusclemetabolism,andreactiveO2species.However,nosin-glesubstancecanfullyaccountfortheincreasesinmuscleblood?ow,andthemolecularidentityofoneormoreofthesesignalsisunknown.

Blood?owisredistributedawayfromthekidney,liver,othervisceralorgans,andinactivemuscleviavasoconstrictioninthesevascularbeds,secondarytoincreasedsympatheticactiv-ityduringexercise.ThispermitsahigherfractionofQtobedeliv-eredtoactiveskeletalmuscleandpartiallyoffsetsthefallintotalperipheralresistanceasaresultofskeletalmusclevasodilation.Blood?owtothecentralnervoussystemremainseitherun-changedorincreasesslightly,andcoronaryblood?owin-creases.Becauseevaporationofsweatisthemajormechanismfordissipationofheatduringexercise,especiallyathigherenvi-ronmentaltemperatures,thereisanincreaseinskinblood?ow

′lez-Alonsoandsweating-induced?uidlosswithexercise(Gonza

etal.,2008).Withincreasedexerciseintensity,theskinbecomesatargetforvasoconstrictionasskeletalmuscleblood?owin-creasesdespiteincreasedmetabolicheatproduction.Tomain-tainMAP,skeletalmuscletakespriorityoverskinblood?ow.AsexerciseapproachesVO2max,the?nitecardiacpumpingcapac-itymeansthatactiveskeletalmuscleisalsosubjecttovasocon-striction(Calbetetal.,2004).Withincreasedenvironmentalstress,thecombinationofprogressivehyperthermiaanddehy-drationfurtherchallengesthecardiovascularsystemduringpro-′lez-Alonsoetal.,2008).longed,strenuousexercise(Gonza

ThecriticalfunctionsofthepulmonarysystemaretomaintainarterialoxygenationandtofacilitatetheremovalofCO2producedduringoxidativemetabolism.Thisisachievedbyincreasedventilationinproportiontoexerciseintensity,andarte-rialPO2andPCO2aregenerallymaintainedatrestinglevelsuntilheavyexercise.ThefactorsresponsibleforthemarkedincreaseinventilationincludedescendingcentralcommandinparallelwithmotorcorticalactivationofskeletalmusclethatstimulatesthebrainstemrespiratorycentersandfeedbackstimulationfromtypeIIIandIVafferents(Dempseyetal.,2014).Inmosthealthyindividualsexercisingatsealevel,arterialoxyhemo-globinsaturation(SaO2)iswellmaintained.However,insomehighlytrainedenduranceathletes,high-intensityexerciseresultsinasigni?cantdropinSaO2thatimpairsO2deliverytocontract-ingskeletalmuscleandresultsinimpairedexercisecapacity(Amannetal.,2006).AnotherthreattolocomotormuscleO2de-liveryandperformanceduringhigh-intensityexerciseisre?ex

Cell159,November6,2014a2014ElsevierInc.741

sympatheticvasoconstrictionofthelimbskeletalmusclevascu-lature,secondarytoactivationoftypeIIIandIVafferentsinrespiratorymuscles(Dempseyetal.,2002).Increasesinrespira-torymuscleworkduringheavyexerciseresultinincreasedmetaboliteaccumulationandactivationoftheseafferents.Thisre?exservestodirectagreaterproportionofthelimitedQtotherespiratorymusclesbutattheexpenseofthelocomotormusclesandexerciseperformance.

Theacutecardiovascularadaptationstobothdynamicandisometricexerciseleadtopatternsoflong-termremodelingandadaptationsthatincreaseVO2maxandminimizedisruptionsinwhole-bodyhomeostasis.Theautonomicandsensoryfeed-backsystemsdescribedpreviouslyaresubjecttochronicreset-tingsothat,duringdynamicexercise,somewhatlowerBPsaretolerated,thuspermittinggreaterincreasesinskeletalmuscleblood?ow.Thisisaccompaniedbycellularchangesinthebrain-stemcardiovascularcenterthattendtobepro-vagalandsym-pathoinhibitory.ThesechangespartlyexplainwhyexerciseatanygivensubmaximalworkrateaftertrainingisaccompaniedbyalowerHRandBP.TheyalsocontributetothechronicBPloweringeffectsofexerciseingeneral.Adaptationstoresistancetrainingarelesswellcharacterized.However,duringmaximalweightlifting,BPcanexceed480/350mmHg(MacDougalletal.,1985),consistentwiththeideathatcompressionofthebloodvesselsinthecontractingskeletalmusclesevokesre-sponsesdesignedtoovercome‘‘underperfusion’’bysubstan-tiallyincreasingBP.

Withdynamicexercise,thereisconsiderableremodelingofthevascularsystem,especiallyintheskeletalmusclessubjectedtotraining,includinganincreaseinthediameteroflargecon-ductingvesselslikethefemoralarteryforlegexercise(Greenetal.,2012).Thereisalsoanincreaseinthenumberofarteriolesandincreasedcapillarydensityinthetrainedmusculature.ThisstructuralremodelingisdrivenbyacomplexandredundantsequenceofeventsthatincludesNO,prostaglandins,andvascularendothelialgrowthfactor(VEGF)signalingpathways(HoierandHellsten,2014).Thetimecourseofremodelingalsovariesbybloodvesselsize.Earlyinexercisetraining,thereisamarkedincreaseinnitricoxidesynthase(NOS)expressioninthelargeconductingvesselsinresponsetoincreasedshearstress.However,asthecaliberofthevesselincreaseswithtraining,theshearstressnormalizesandNOSexpressionreturnstobaselinevalues.Thoughmanyoftheseadaptationsarerestrictedtothevascularbedsoftheworkingmuscle,improvedendothelialfunctionappearstobeawhole-bodyresponsetoexercisetraining.

Dynamicexercisetrainingisassociatedwithanincreaseincardiacchambersize,butnotwallthickness,thatfacilitatestheincreaseinSVcausedbythismodeoftraining.Endurancetrainingpromotesvolumehypertrophy,whereasresistancetrainingdoesnotcausemajorchangesinthethicknessofcardiacmuscle.Thestimulusforcardiacvolumehypertrophywithdynamicexercisetrainingisstretchoftheventriclecausedbytheincreasedvenousreturnfromtheperiphery.Thisstretchisfacilitatedbytraining-inducedincreasesinbloodvolumeandcatecholamineconcentrations.Thecellularmechanismsresponsibleforcardiachypertrophywithexercisetraininginvolveactivationofanumberofpathways,includingtheinsu-742Cell159,November6,2014a2014ElsevierInc.

lin-likegrowthfactor1(IGF-1)-phosphatidylinositide3-kinase(PI3K)-Akt/proteinkinaseBaxis(Ellisonetal.,2012),inparticularPI3K(p110a).DownstreamofAkt,exercise-inducedcardiomyo-cytehypertrophyandproliferationappearstobeassociatedwithreducedC/EBPbexpressionandaconcomitantincreasein

CITED4expression(Bostro

¨metal.,2010).Cardiachypertrophyalsoinvolvesdenovocardiomyocyteformationbyactivationofbothcirculatingandtissue-speci?ccardiacprogenitorcells.Inhighlymotivatedyoung,healthyindividuals,VO2maxdoesnotappeartobelimitedbymusclemitochondrialoxidativecapacity(Bousheletal.,2011).Rather,O2deliverytoskeletalmuscleisratelimiting,andalthoughthisisdeterminedbybothconvectiveanddiffusivemechanisms,centralcardiovascularfunctionandtheabilitytoincreaseactiveskeletalmuscleblood

?owappeartobecritical(Gonza

′lez-AlonsoandCalbet,2003).However,musclemitochondrialoxidativecapacitydoesappeartobeanimportantdeterminantofenduranceexerciseperfor-mance(JoynerandCoyle,2008).Thus,treadmillrunningtimeatsubmaximalexerciseintensityisusedasaphysiologicalcorrelateoftransgenicinterventionsthatimpactmuscleoxida-tivecapacity(Potthoffetal.,2007;Wangetal.,2004).

SkeletalMuscleMatters

SkeletalMuscleFiberTypeandAdaptationPlasticity

Theapplicationofsurgicaltechniquestoexercisebiochemistry

inthe1960s(Bergstro

¨mandHultman1966)madeitpossibletoobtainsmall(100–150mg)samplesofhumanskeletalmuscleforhistologicalandbiochemicalstudiestoidentifyspeci?cmorphological,contractile,andmetabolicproperties.Usingtheseapproaches,different?bertypeshavebeenidenti?edalongwiththeircontractilecharacteristics,andthesehavebeenrelatedtofunctionalandmetabolicpropertiesofskeletalmuscleduringexercise(Saltinetal.,1977).Themetabolicpoten-tialofmusclehasalsobeenevaluatedbydeterminingdifferentsubstrateandenzymeactivities.Comprehensivediscussionofskeletalmuscle?bertypesandthegeneprogramsresponsiblefor?ber-speci?cpropertiesarebeyondthescopeofthisReviewandhavebeensummarizedelsewhere(Bassel-DubyandOlson2006;Saltinetal.,1977;Schiaf?noandReggiani1996;ZierathandHawley2004).However,abriefoverviewoftheclassi?cationofhumanmuscle?bertypesandtheirmetabolicpotentialiswarranted.

Histologically,skeletalmuscleappearsuniformbutiscomprisedofmyo?bersthatareheterogeneouswithrespecttosize,metabolism,andcontractilefunction.Onthebasisofspe-ci?cmyosinheavy-chainisoformexpression,myo?berscanbeclassi?edintotypeI,typeIIa,typeIId/x,andtypeIIb?bers,withtypesIandIIaexhibitinghighoxidativepotentialandcapil-larysupplyandwithtypesIIxandIIb?berbeingprimarilyglyco-lytic(PetteandStaron2000;Saltinetal.,1977;Schiaf?noandReggiani1996).TypeImyo?bersaretypicallyreferredtoas‘‘slow-twitch?bers’’becausetheyexertslowcontractiontimetopeaktension,owingtotheATPaseactivityassociatedwiththetypeImyosin,whereastypeII?bersaretermed‘fast-twitch’myo?bersandhavequickercontractiontimebutarapidfatiguepro?le(Bassel-DubyandOlson2006;Saltinetal.,1977).Withendurancetraining,theenhancementoftheoxidativepotentialoftypeIIxandIIb?bersismarkedlyincreased,resultingina

Figure3.RepeatedTransientBurstsinMessengerRibonucleicAcidPrecedeIncreasesinTranscriptionalandMitochondrialProteinsinResponsetoShort-TermTraining

Subjects(n=9)completedsevensessionsofhigh-intensityintervaltrainingduringa2weekintervention.Skeletalmusclebiopsiesfromthevastuslateraliswereobtained4and24hrafterthe?rst,third,?fth,andseventhtrainingsession.PGC-1a,peroxisome-proliferator-activatedreceptorgcoactivatora;CS,citratesynthase.DataareredrawnfromPerryetal.(2010).

potentialforoxidationthatmarkedlysurpassestheaerobicca-pacityoftypeI?bersofuntrainedindividuals(Saltinetal.,1977).Indeed,theabsolutelevelfortheactivitiesofbothoxida-tiveandglycolyticenzymesinall?bertypesinhumansislargeenoughtoaccommodateasubstantialrangeofaerobicandanaerobicmetabolism.

Whetherendurance-orresistance-basedexercisetraininginhumanscanresultin?bertype‘‘reprogramming’’remainsopentodebate.Certainlyendurancetraininginduceschangesinthemetabolicpropertiesofskeletalmusclebyconferringanincreasedoxidativepro?letothetrainedmyo?bers(Saltinetal.,1977).Sucheffectsarelikelytoinvolveaplethoraofsignalingcascadesandtranscriptionfactorsincluding,butnotlimitedto,calciumsignalingpathwaysinvolvingcalcineurin,calcium-calmodulin-dependentkinase,andthetranscriptionalcofactorsperoxisomeproliferator-activatedreceptorgcoactiva-tor1a(PGC-1a)andPPARd(OlsonandWilliams2000;Linetal.,2002;Wangetal.,2004;Wuetal.,2002).However,thespeci?ctranscriptionalfactorsdirectlyinvolvedinthecontrolofthemus-clephenotypeand?ber-speci?ccontractilepropertiesremaintobefullycharacterized.

Humanskeletalmuscledisplaysremarkableplasticity,withthecapacitytoalterboththetypeandamountofproteininresponsetodisruptionsincellularhomeostasisinducedbythehabituallevelofcontractileactivity,theprevailingsubstrateavailability,andenvironmentalconditions(Hawleyetal.,2011;ZierathandHawley2004).Thoughthisphenomenonof‘‘adapta-tionplasticity’’iscommontoallvertebrates,alargevariationinthedegreeofadaptabilitybetweenhumansisevident.Thispartlyexplainsthelargeinterindividualresponsestostandardizedexercisetraininginterventionsandthestrikingdifferencesinper-formancebetweenindividuals(Bouchardetal.,2011).Thefunc-tionalconsequencesofadaptationplasticityarespeci?ctothemodeofexerciseandarein?uencedbythevolume,intensity,andfrequencyofthecontractilestimulialongwiththehalf-lifeofspeci?cexercise-inducedproteins(Hawley2002).Prolonged

endurance-basedexercisetrainingelicitschangesthatincreasethemitochondrialproteincontentandrespiratorycapacityofthetrainedmyo?bers.Theseadaptationsunderpinthealteredpat-ternsofsubstrateoxidationduringsubmaximalexercise(fromcarbohydrate-tofat-basedfuels)thatresultinlesslactatepro-ductionatagivensubmaximalpoweroutputorspeed(Holloszy1967).Incontrast,strengthandresistance-basedtrainingstimu-latesthemyo?brillarproteinsresponsibleformusclehypertro-phy,culminatinginincreasesinmaximalcontractileforceoutput(Phillips2014)withoutsubstantialchangesinfueluseduringexercise.Concomitantwiththevastlydifferentfunctionaloutcomesinducedbythesediverseexercisemodes,thege-neticandmolecularmachineryaffectingtheseadaptationsaredistinct.

AdaptationstoExerciseTraining:TheCumulativeEffectofRepeatedExerciseBouts

Theconversionofvariouschemical,electrical,andmechanicalsignalsgeneratedduringmusclecontractiontomoleculareventspromotingphysiologicalresponsesandsubsequentadaptationsinvolvesacascadeofeventsresultinginactivationand/orrepressionofspeci?csignalingpathwaysregulatingexercise-inducedgeneexpressionandproteinsynthesis/degradation.Thesepathwaysarenumerousandhavebeenreviewedelse-where(Bassel-DubyandOlson2006;CoffeyandHawley2007;EganandZierath,2013;Hoodetal.,2006).Potentialsignalsdur-ingcontractileactivityinclude,butarenotlimitedto,increasedsarcoplasmic[Ca2+],increasedAMPand/oranincreasedADP/ATPratio,reducedcreatinephosphateandglycogenlevels,increasedfattyacidandROSlevels,acidosis,andalteredredoxstate,includingNAD/NADH,andhyperthermia(Hawleyetal.,2006).Redundancyandcompensatoryregulationarekeycharacteristicsofbiologicalsystemsthatacttopreservephysi-ologicalresponsesandadaptationstoavarietyof‘‘threats’’tocellularhomeostasis.Indeed,somegenedeletionsormutationshavelittleeffectonmetabolicadaptation,highlightingthepoten-tialcaveatsinvolvedinutilizingtransgenicorknockoutmodelstoexaminemechanismsofmuscleadaptation(McGeeetal.,2014).KeysignalingpathwaysinvolveCa2+/calmodulin-dependentki-nases(CaMK),calcineurin,AMP-activatedproteinkinase(AMPK),mitogen-activatedproteinkinases(ERK1/2,p38MAPK),andmammaliantargetofrapamycin(mTOR).Thetargetsofthesesignalingpathwaysincludemanytranscriptionfactors,coactiva-tors,andrepressors.ExerciseincreasesactivationofCaMKII(RoseandHargreaves,2003),AMPK(WinderandHardie1996;Fujiietal.,2000),andMAPKs(Widegrenetal.,1998).Aspreviouslynoted,contraction-inducedalterationsinintracellular[Ca2+]arelinkedtodistinctiveprogramsofgeneexpressionthatestablishphenotypicdiversityamongskeletalmyo?bers(Chin,2005;TaviandWesterblad,2011).Inaddition,activationofAMPKbyexer-cise-inducedalterationsinmuscleenergystatusincreasesgenetranscriptioninskeletalmuscle(McGeeandHargreaves,2010).

Adaptationstoexercisetrainingresultfromthecumulativeef-fectoftransientincreasesinmRNAtranscriptsthatencodeforvariousproteinsaftereachsuccessiveexercisebout.TheserepeatedburstsinmRNAexpressionappeartobeessentialtodrivetheintracellularadaptiveresponsetoexercisetraining(NeuferandDohm1993;Perryetal.,2010)(Figure3).Thetiming

Cell159,November6,2014a2014ElsevierInc.743

Figure4.SchematicoftheMajorSignalingPathwaysInvolvedintheControlofSkeletalMuscleHypertrophyandMitochondrialBiogenesis

Multipleprimarysignals,including,butnotlimitedto,mechanicalstretch,calcium,pH,redoxstate,hypoxia,andmuscleenergystatus,arealteredwithvoluntarydynamicexercise.Followinginitiationofoneormoreofthesepri-marysignals,additionalkinases/phosphatasesareactivatedtomediateaspeci?cexercise-inducedsignal.Inmammaliancells,numeroussignalingcascadesexist.Thesepathwaysareregulatedatmultiplesites,withsub-stantialcrosstalkbetweenpathwaysproducingahighlysensitive,complextransductionnetwork.

andresponsivenessofindividualmRNAspeciestodifferenttypesofcontractileactivityisvariable,butpeakinductionforboth‘‘metabolic’’and‘‘myogenic’’genesgenerallyoccur4–8hrafteranexercisebout,withmRNAlevelsreturningtopre-ex-erciselevelswithin24hr(Yangetal.,2005).AnotherlevelofregulationofmRNAandproteinabundancebyexerciseinvolves

alterationsinDNAmethylationstatus(Barre

`setal.,2012),his-tonemodi?cations(McGeeandHargreaves,2011),andmicro-RNAexpression(Zacharewiczetal.,2013).Ultimatelytheabilityofagivenmusclecelltoalterthetypeandquantityofproteinisafunctionofitshalf-life.Proteinsthatturnoverrapidlyandhavehighratesofsynthesisarecapableofattaininganewsteady-statelevelfasterthanthosethatturnoverslowlyduringadapta-tiontocontractileandotherstimuli.

MitochondrialBiogenesisandEnduranceTrainingAdaptation

Mitochondrialbiogenesisrequiresthecoordinationofmultiplecellularevents,includingtranscriptionoftwogenomes,synthe-744Cell159,November6,2014a2014ElsevierInc.

sisoflipidsandproteins,andthestoichiometricassemblyofmultisubunitproteincomplexesintoafunctionalrespiratorychain(Hoodetal.,2006).Impairmentsatanystepcanleadtodefectiveelectrontransport,failureofATPproduction,andaninabilitytomaintainenergyhomeostasis.SincetheseminalworkofHolloszy(1967),whodiscoveredthatmusclesoftread-mill-trainedratsexhibitedhigherlevelsofmitochondrialproteinsthanthoseofuntrainedanimals,majorbreakthroughsinunravel-ingthecellulareventscontrollingskeletalmusclemitochondrialbiogenesishaveoccurred.Severaltranscriptionfactorsthatregulatetheexpressionofthenucleargenesencodingmito-chondrialproteinswerediscovered(Scarpulla2006).Theseincludenuclearrespiratoryfactors1and2(NRF-1,NRF-2)thatbindtothepromotersandactivatetranscriptionofgenesthatencodemitochondrialrespiratorychainproteins(KellyandScar-pulla2004).NRF-1alsoactivatesexpressionofthenucleargenethatencodesmitochondrialtranscriptionfactorA(TFAM),whichmovestothemitochondriaandregulatestranscriptionofthemitochondrialDNA(i.e.,themitochondrialgenome).BecausenotallpromotersofgenestranscribingmitochondrialproteinshaveNRF-1-bindingsites,othertranscriptionfactorsareinvolvedincontractile-modulatedmitochondrialbiogenesis,includingtheestrogen-receptor-relatedreceptors(ERR)aanddandtheperoxisomeproliferator-activatedreceptorcoactiva-tors(PPARs),whichregulateexpressionofthemitochondrialfattyacidoxidativeenzymes(KellyandScarpulla,2004;Scar-pulla,2006).

AnothermajorbreakthroughinunravelingthecellulareventsthatpromotemitochondrialbiogenesiswasthediscoveryofPGC-1a,aninduciblecoactivatorthatregulatesthecoordinatedexpressionofmitochondrialproteinsencodedinthenuclearandmitochondrialgenomes(Linetal.,2005).AcriticalfeatureofthePGC-1coactivatorsisthattheyarehighlyversatileandinteractwithmanydifferenttranscriptionfactorstoactivatedistinctbio-logicalprogramsindifferenttissues(Linetal.,2005).Inskeletalmuscle,PGC-1ahasemergedasakeyregulatorofmitochon-drialbiogenesisthatrespondstoneuromuscularinputandtheprevailingcontractileactivity.Asingleboutofenduranceexer-ciseinducesarapidandsustainedincreaseinPGC-1ageneandproteininskeletalmuscle(Mathaietal.,2008),whereasmuscle-speci?coverexpressionofPGC-1aresultsinalargein-creaseinfunctionalmitochondria(Linetal.,2002),improve-mentsinwhole-bodyVO2max,ashiftfromcarbohydratetofatfuelsduringsubmaximalexercise,andimprovedenduranceper-formance(Calvoetal.,2008).Gain-of-functionstudiesrevealthatexpressionofPGC-1aatornearphysiologicallevelsleadstoactivationofgeneticprogramscharacteristicofslow-twitchmuscle?bers(Linetal.,2002),withthemusclesofthesetrans-genicmiceresistanttocontraction-inducedfatigue.LossoffunctionstudieschallengetheabsoluterequirementofPGC-1aforexercisetraining-inducedchangesinmusclemitochondrialbiogenesis,angiogenesis,and?bertypechanges(Gengetal.,2010;Roweetal.,2012).Onbalance,currentobservationsplacePGC-1aasacentralplayerinorchestratingmanyoftheoxidativeadaptationstoexercise.

AMPKandp38MAPKaretwoimportantsignalingcascadesthatconvergeupontheregulationofPGC-1aandconsequentlytheregulationofmitochondrialbiogenesis(Figure4).AMPK

inducesmitochondrialbiogenesispartlybydirectlyphosphory-latingandactivatingPGC-1a(Ja

¨geretal.,2007),butalsobyphosphorylatingthetranscriptionalrepressorHDAC5,whichrelievesinhibitionofthetranscriptionfactormyocyteenhancerfactor2(MEF2),aknownregulatorofPGC-1a(McGeeandHar-greaves,2010).Ofnote,MEF2activationisassociatedwithincreasedmuscleoxidativecapacityandrunningendurance(Potthoffetal.,2007).p38MAPKphosphorylatesandactivatesPGC-1a(Puigserveretal.,2001)andalsoincreasesPGC-1aexpressionbyphosphorylatingthetranscriptionfactorATF-2,whichinturnincreasesPGC-1aproteinabundancebybindingtoandactivatingtheCREBsiteonthePGC-1apromoter(Aki-motoetal.,2005).Thetumorsuppressorproteinp53,presum-ablyactivatedbyAMPKand/orp38MAPK,isemergingasanothertranscriptionfactorinvolvedinexercise-inducedmito-chondrialbiogenesisinskeletalmuscle.p53knockoutmicedisplayreducedenduranceexercisecapacitycomparedwithwild-typemice,alongwithreducedsubsarcolemmalandinter-myo?brillarmitochondrialcontentandPGC-1aexpression.p53mayregulateexercise-inducedmitochondrialbiogenesisthroughinteractionswithTFAMinthemitochondria,whereitfunctionstoco-ordinateregulationofthemitochondrialgenome(Bartlettetal.,2014).

MuscleHypertrophyandMyogenicPathways

Strengthtrainingincreasesmuscle?bersize(hypertrophy)andmaximaltensionoutput.Theseadaptationsareattainedbypos-itivemuscleproteinbalanceandsatellitecelladditiontopre-ex-isting?bers.Positivemuscleproteinbalanceoccurswhentherateofnewmuscleproteinsynthesisexceedsthatofbreakdown.Althoughresistanceexerciseandpostprandialhyper-aminoaci-demiabothstimulatemuscleproteinsynthesis,itisthroughthesynergisticeffectsofthesestimulithatanetgaininmusclepro-teinoccursand?berhypertrophytakesplace(Phillips2014).ActivationofmTORappearstobeimportantforcontraction-inducedincreasesinmuscleproteinsynthesis(Drummondetal.,2009).Onceactivated,mTORexistsastwodistinctcomplexes,mTORcomplex1(TORC1)andmTORcomplex2(TORC2).TORC1ischaracterizedbythepresenceofregulato-ry-associatedproteinofmTOR(RAPTOR),whereasTORC2bindsrapamycin-insensitivecompanionofmTOR(RICTOR).Thesetwoproteincomplexessensediversesignalsandproduceamultitudeofresponses,includingmRNAtranslation,ribosomalbiogenesis,andnutrientmetabolism(CoffeyandHawley2007;EgermanandGlass,2014).IGF-1haslongbeenconsideredakeyupstreamregulatorofmTOR.SignalingactivatedbyIGF-1positivelyregulatesskeletalmusclemassviainductionofproteinsynthesisdownstreamofproteinkinaseB/AktandthemTORpathway(Bodineetal.,2001).IGF-1transmitssignalingalongthePI3K/Aktpathway(Figure4),resultingintheparallelactiva-tionofthemTORpathway,producingamultitudeofresponses,includingmRNAtranslation,ribosomalbiogenesis,andnutrientmetabolism(CoffeyandHawley2007).Growth-factor-indepen-dent,mechanosensitiveactivationofmTORalsocontributestomuscleproteinsynthesis(Philpetal.,2011).

Themostwell-de?nedeffectorsofmTORsignalingarepro-teinsimplicatedintranslationalcontrol:ribosomalproteinS6ki-nase(p70S6K)andeukaryoticinitiationfactor4E-bindingprotein(4E-BP1).Indeed,afteractivationbyAkt,TORC1controlspro-teinsynthesisbyphosphorylatingp70S6kinase1andthe4E-BP1,andtheTORC2multiproteincomplexcontributestotheprolongedactivationofAkt.Phosphorylationofp70S6KandsubsequentactivationofribosomalproteinS6enhancestransla-tionofmRNAs,encodingelongationfactorsandribosomalproteinsandtherebyincreasingtranslationalcapacity.p70S6Kplaysafundamentalroleinskeletalmusclehypertrophy(Liuetal.,2002).Asingleboutofresistanceexerciseinhumansleadstoincreasesinp70S6Kphosphorylation,whichiscorrelatedwiththechronicincreaseinmusclemassandstrengthobservedafterchronicresistancetraining.Thus,theacuteresponsestoexer-cise,includingdynamicchangesinmuscleproteinturnoverandtheearlyactivationofsignalingproteins,mayactassurro-gatesoflong-termphenotypicchangesinmusclemassandstrength.

PGC-1a4,atranscriptfromthePGC-1agene,isabundantlyexpressedinskeletalmuscleandappearstoplayaroleintheadaptiveresponsetoexercise,particularlyinthesettingofresis-tancetraining(Ruasetal.,2012).ThisproteindoesnotappeartoregulatethesamesetofoxidativegenesinducedbyPGC-1abut,rather,activatestheexpressionofIGF-1whileconcomi-tantlysuppressingmyostatin(aninhibitorofmusclecelldifferen-tiationandgrowth)pathways.Aftertrainingconsistingofeitherenduranceexercise,resistanceexercise,oracombinationofbothenduranceandresistanceexercise,increasesinPGC-1a4werecon?nedtoresistance-onlyandcombinedexercisetrainingprograms,withnochangesinthistranscriptafterendur-ance-onlytraining(Ruasetal.,2012).Thoughtheseresultsarenotable,theproposalthatskeletalmusclehypertrophyfollowingresistanceexerciseismediatedthroughPGC-1a4remainsamatterofdebate.

Skeletalmusclefromendurance-andstrength-trainedindivid-ualsrepresentsdiverseadaptivestates(Figure4).Thus,itishardlysurprisinglythatsimultaneouslytrainingforbothenduranceandstrengthresultsinacompromisedadaptationcomparedwithtrainingforeitherexercisemodalityalone(Hick-son1980),aphenomemonknownasthe‘‘interferenceeffect.’’Theseobservationsmademorethan30yearsago(Hickson1980)raisedthepossibilitythatthegeneticandmolecularmechanismsofadaptationinducedbyenduranceandresis-tancetrainingaredistinct,witheachmodeofexerciseactivatingand/orrepressingspeci?csubsetsofgenesandcellularsignalingpathways.Preliminaryevidenceforselectiveactivationand/ordownregulationoftheAMPK-PGC-1aorAkt-mTORsignalingpathwayswasreportedinrodentskeletalmuscleinresponsetoeitherlow-frequency(tomimicendurancetraining)orhigh-frequency(tomimicresistancetraining)electricalstimu-lationinvitro(Athertonetal.,2005).However,inwell-trainedhu-mans,littleevidenceexistsforanAMPK-Akt‘‘masterswitch.’’Usinghighlytrainedathleteswithahistoryofeitherenduranceorstrengthtrainingwhoperformedbothanacuteboutofexerciseintheirspecializeddisciplineandthen‘‘crossedover’’andundertookaboutofunfamiliarexercise,ahighdegreeof‘‘responseplasticity’’isconservedatoppositeendsoftheendurance-hypertrophicadaptationcontinuum(Coffeyetal.,2006).Giventhatgenotypeswereoriginallyselectedtosupportdiversephysicalactivitypatternsobligatoryforhumansurvivalandthatmoderndaysuccessinmanysportingendeavors

Cell159,November6,2014a2014ElsevierInc.745

requiresahighendurancecapacitycoupledwithsuperiorexplo-sivepower,theconservationofmultiplesignalingnetworkstomeetdivergentphysiologicaldemandsseemstomakesoundevolutionaryandbiologicalsense!

SpreadingtheMessage:SkeletalMuscleCrosstalk

Morethan50yearsago,Goldsteinproposedthatskeletalmus-clecellspossesseda‘‘humoral’’factorthatcontributedtothemaintenanceofglucosehomeostasisduringexercise(Gold-stein,1961).Duringthepastdecade,skeletalmusclehasbeencon?rmedasanendocrineorgan.Cytokinesandotherpeptidesthatareexpressed,produced,expressed,and/orreleasedbymuscle?bersandexerttheirautocrine,paracrine,orendocrineeffectsarenowclassi?edas‘‘myokines’’(Pedersenetal.,2003).The?ndingofmuscle‘‘crosstalk’’withotherorgans,includingadiposetissue,liver,pancreas,bone,andthebrain,providesaframeworkforunderstandinghowexercisemediatesmanyofitsbene?cial‘‘whole-body’’effects.Althoughsomemy-okinesexerttheiractionsonotherorgansinanendocrinefashion,manyoperatelocallyonskeletalmuscleandtherebyprovideafeedbackloopforthemuscletoregulateitsowngrowthandregenerationforadaptationtoexercisetraining.The?rstcytokinefoundtobereleasedintothebloodstreaminresponsetomusclecontractionwasinterleukin6(IL-6).HumanskeletalmuscleisuniqueinthatitcanproduceIL-6duringexer-ciseindependentlyoftumornecrosisfactor,suggestingthatmuscle-derivedIL-6hasaroleinmetabolismratherthaninin?ammation.IL-6increasesbothmuscleandwhole-bodyratesoflipidoxidation(possiblythoughactivationofAMPK)andalsocontributestohepaticglucoseproductionduringexercise.

Contractingmuscle?bersproducemanycirculatingfactors.ThecurrentlistofpotentialmyokinesincludesbutisnotlimitedtoIL-8,IL-15,decorin,follistatin-like1,?broblastgrowthfac-tor-21(FGF21),irisin,chemokineCXCmotifligand-1(CXCL-1)alsoknownasKC(keratinocyte-derivedchemokine),andmete-orin-like(Metrnl)(Bostro

¨metal.,2012;Raoetal.,2014;Pedersenetal.,2012;Wrannetal.,2013).Asmall-moleculemyokine,b-aminoisobutyricacid(BAIBA),witheffectsonadiposetissueandliver,hasalsobeendescribed(Robertsetal.,2014).Mostrecently,exercise-inducedalterationsinkynureninemetabolism,mediatedviaincreasedskeletalmusclePGC-1a1expression,in-creaseresiliencetostress-induceddepressioninmice(Agudeloetal.,2014).Althoughthepotentialtherapeuticbene?tsofmus-cle-derivedmoleculesfortreatingobesityandotherinactivity-relateddisordersareappealing,thereislittleclinicalevidenceinhumanstodate.

Can‘‘ExerciseMimetics’’EverReplaceExercise?

Manyoftheadaptiveresponsesofskeletalmuscletoexercisetrainingcanbemimickedbygeneticmanipulationand/ordrugtreatment,atleastinanimalmodels(Narkaretal.,2008).Conse-quently,giventhenumerousbene?tsofexerciseongeneralhealth,ithasbeenstatedthat‘‘theidenti?cationofgeneticand/ororallyactiveagentsthatmimicorpotentiatetheeffectsofenduranceexerciseisalongstandingalbeitelusivemedicalgoal’’(Narkaretal.,2008).Recognizingtheprovenbene?tsofexercisetrainingonhealthoutcomesandthetrendtowardincreasinginactivityatthepopulationlevel,effortsareunderwaytodiscoverorallyactivecompoundsthatmimicorpotentiatetheeffectsofexercisetraining,so-called‘‘exercisemimetics.’’

746Cell159,November6,2014a2014ElsevierInc.

Althoughtheconceptoftakingapilltoobtainthebene?tsofexercisewithoutactuallyexpendinganyenergyhasmassap-pealforalargemajorityofsedentaryindividuals,suchanapproachislikelytofail.Exercisetrainingprovokeswidespreadperturbationsinnumerouscells,tissues,andorgan,conferringmultiplehealth-promotingbene?ts,anditisthemultiplicityandcomplexityoftheseresponsesandadaptationsthatmakeithighlyimprobablethatanysinglepharmacologicalapproachcouldevermimicsuchwide-rangingeffects.Thougha‘‘polypill’’containingseveralagonistsaimedatselectedexercise-inducedtargetsisapossibility,suchanapproachislikelytobeassoci-atedwithmultipleoff-targetandpotentialdeleterioussideeffects.Amoreachievablegoalwillbetoidentifytissue-speci?ctargetsthroughadeeperunderstandingofthemolecularpath-waysactivatedbyexerciseinvariousorgansystems,enablinglimitedaspectsoftheexerciseresponsetobepharmacologi-callymimicked.Althoughsuchagentsmaybeusefuladjuvantsinsomesettings,exerciseitselfremainsthebest‘‘polypill’’toimprovehealthandwellbeing(Fiuza-Lucesetal.,2013).Inouropinion,?ndingwaystomotivatepeopletoadoptandmaintainaphysicallyactivelifestylewillhaveagreaterimpactonindivid-ualandpopulationhealththansearchingforpotentialpharmaco-logicaltreatments.If?ndingorallyactiveexercisemimeticsisreallya‘‘longstanding’’medicalgoal,webelieveitwillcontinuetobeelusiveforreasonsevidentinthisReview.

BeyondtheFinishLine:TheNext40Years

Duringthelast40years,withtheapplicationofmoleculartech-niquestoexercisebiology,multipleandapparentlyredundantmolecularpathwaysengagedinmanykeyacuteandchronicresponsestoexercisehavebeenelucidatedinskeletalmuscleandothertissues.Althoughmajorbreakthroughsintheknowl-edgeofhowexerciseactivatesnumerouscellular,molecular,andbiochemicalpathwayshavebeenwitnessed,directevi-dencelinkingsucheffectstospeci?chealthoutcomesandun-derstandinghowtheseeffectsexerttheirbene?tsindifferentpopulationsremainselusiveandachallengeforfutureresearch.Duringthepasttwodecades,thelong-hypothesizedcrosstalkbetweenmuscleandotherorgansviathereleaseofsubstancesbythecontractingmuscleshasbeencon?rmed.However,inmanycases,normalresponsesandadaptationstobothacuteexerciseandchronicexercisetrainingcanbeseenwhenoneormorekeypathwaysareabsent,areblockedwithdrugs,orareotherwiseattenuated.Thisbiologicalredundancyindicatesthatperhapstheonlyobligatoryresponsetoexerciseisthede-fenseofhomeostasisitself.Clearlyabigchallengeforexercisebiologistsinthenext40yearswillbetoconnectdistinctsignalingcascadestode?nedmetabolicresponsesandspeci?cchangesingeneexpressioninskeletalmusclethatoccurafterexercise.Thiswillbecomplicatedbecausemanyofthesepath-waysarenotlinear,but,rather,theyconstituteacomplexnetwork,withahighdegreeofcrosstalk,feedbackregulation,andtransientactivation.Thevarious‘‘omics’’technologiesandtheapplicationofcomputationalandsystemsbiologyap-proachestoproblemsinexercisebiologyshouldfacilitatefutureprogress.

Futureresearchinthe?eldofexercisebiologyrequiresincreasinglysophisticatedapproachestounderstandthecritical

nodesofenergyhomeostasisandhowthesepathwaysaredis-ruptedinanumberofinactivity-relateddisorders.Variousstrainsofmicehavelongbeenusedtoexamineresearchquestionsinexercisebiology.Recentstudiesusingtheworm(Caenorhabdi-tiselegans),?y(Drosophilamelanogaster),andzebra?sh(Daniorerio)indicatethatthese‘‘lower’’metazoansalsopossessuniqueattributesthatcouldprovevaluableinthestudyofmeta-bolicdiseases,includingtheeffectsofexercise/musclecontrac-tion.Detailedcharacterizationoftheknownpathwaysregulatinglowermetazoanenergymetabolismmayaidinidentifyingandcharacterizingnovelcandidategenesforhumandiseasessuchasobesityandtype2diabetesmellitus,andthefunctionofsuchgenesmaybemoreamenabletostreamlinedcharacteriza-tioninlowerorganisms.Althoughtherearelimitationsofeachmodelsystemthatneedtoberecognizedwhendeployingtheseorganismsfortargetvalidationand,ultimately,translationintohumans,theabilitytoperformsophisticatedandmechanisticstudiesindicatesthatsuchanapproachcouldyieldtransforma-tiveresearchoutcomesinthecomingdecades.Inthe?nalanal-ysis,itistheorganism’sphenotypeasawholethatinteractswithandadaptstotheexternalworld.Thestudyofexercisebiologyshowsthattheneedtointegrateobservationsfromgenes,mol-ecules,andcellsinaphysiologicalcontexthasneverbeengreater.

ACKNOWLEDGMENTS

Duringourcareers,wehavebeenfortunatetoworkalongsidesomeofthepi-oneersinthe?eldofexercisebiology,includingDr.DavidL.Costill,Dr.JohnO.Holloszy,andthelateDr.BengtSaltin.WehopethatthisReview,insomesmallpart,doesjusticetoyourlegacies.Duetorestrictionsonthenumberofrefer-ences,wehavebeenunabletoincludeimportantworkbysomeofourpeers,forwhichweapologizeinadvance.

REFERENCES

Agudelo,L.Z.,Femen?

′a,T.,Orhan,F.,Porsmyr-Palmertz,M.,Goiny,M.,Mar-tinez-Redondo,V.,Correia,J.C.,Izadi,M.,Bhat,M.,Schuppe-Koistinen,I.,etal.(2014).SkeletalmusclePGC-1a1modulateskynureninemetabolismandmediatesresiliencetostress-induceddepression.Cell159,33–45.Akimoto,T.,Pohnert,S.C.,Li,P.,Zhang,M.,Gumbs,C.,Rosenberg,P.B.,Wil-liams,R.S.,andYan,Z.(2005).ExercisestimulatesPgc-1alphatranscriptioninskeletalmusclethroughactivationofthep38MAPKpathway.J.Biol.Chem.280,19587–19593.

Amann,M.,Eldridge,M.W.,Lovering,A.T.,Stickland,M.K.,Pegelow,D.F.,andDempsey,J.A.(2006).Arterialoxygenationin?uencescentralmotoroutputandexerciseperformanceviaeffectsonperipherallocomotormusclefatigueinhumans.J.Physiol.575,937–952.

Atherton,P.J.,Babraj,J.,Smith,K.,Singh,J.,Rennie,M.J.,andWackerhage,H.(2005).SelectiveactivationofAMPK-PGC-1alphaorPKB-TSC2-mTORsignalingcanexplainspeci?cadaptiveresponsestoenduranceorresistancetraining-likeelectricalmusclestimulation.FASEBJ.19,786–788.

Barre

`s,R.,Yan,J.,Egan,B.,Treebak,J.T.,Rasmussen,M.,Fritz,T.,Caidahl,K.,Krook,A.,O’Gorman,D.J.,andZierath,J.R.(2012).Acuteexercisere-modelspromotermethylationinhumanskeletalmuscle.CellMetab.15,405–411.

Bartlett,J.D.,Close,G.L.,Drust,B.,andMorton,J.P.(2014).Theemergingroleofp53inexercisemetabolism.SportsMed.44,303–309.

Bassel-Duby,R.,andOlson,E.N.(2006).Signalingpathwaysinskeletalmus-cleremodeling.Annu.Rev.Biochem.75,19–37.

Bassett,D.R.,Jr.(2002).Scienti?ccontributionsofA.V.Hill:exercisephysi-ologypioneer.J.Appl.Physiol.93,1567–1582.

Bauer,U.E.,Briss,P.A.,Goodman,R.A.,andBowman,B.A.(2014).Preventionofchronicdiseaseinthe21stcentury:eliminationoftheleadingpreventablecausesofprematuredeathanddisabilityintheUSA.Lancet384,45–52.Bergstro

¨m,J.,andHultman,E.(1966).Muscleglycogensynthesisafterexer-cise:anenhancingfactorlocalizedtothemusclecellsinman.Nature210,309–310.

Blair,S.N.,Kampert,J.B.,Kohl,H.W.,3rd,Barlow,C.E.,Macera,C.A.,Paffen-barger,R.S.,Jr.,Gibbons,L.W.,andGibbons,L.W.(1996).In?uencesofcardiorespiratory?tnessandotherprecursorsoncardiovasculardiseaseandall-causemortalityinmenandwomen.JAMA276,205–210.

Bodine,S.C.,Stitt,T.N.,Gonzalez,M.,Kline,W.O.,Stover,G.L.,Bauerlein,R.,Zlotchenko,E.,Scrimgeour,A.,Lawrence,J.C.,Glass,D.J.,andYancopoulos,G.D.(2001).Akt/mTORpathwayisacrucialregulatorofskeletalmusclehyper-trophyandcanpreventmuscleatrophyinvivo.Nat.CellBiol.3,1014–1019.Booth,F.W.,andLees,S.J.(2006).Physicallyactivesubjectsshouldbethecontrolgroup.Med.Sci.SportsExerc.38,405–406.

Booth,F.W.,Gordon,S.E.,Carlson,C.J.,andHamilton,M.T.(2000).Wagingwaronmodernchronicdiseases:primarypreventionthroughexercisebiology.J.Appl.Physiol.88,774–787.

Booth,F.W.,Chakravarthy,M.V.,Gordon,S.E.,andSpangenburg,E.E.(2002).Wagingwaronphysicalinactivity:usingmodernmolecularammunitionagainstanancientenemy.J.Appl.Physiol.93,3–30.

Bostro

¨m,P.,Mann,N.,Wu,J.,Quintero,P.A.,Plovie,E.R.,Pana′kova′,D.,Gupta,R.K.,Xiao,C.,MacRae,C.A.,Rosenzweig,A.,andSpiegelman,B.M.(2010).C/EBPbcontrolsexercise-inducedcardiacgrowthandprotectsagainstpathologicalcardiacremodeling.Cell143,1072–1083.

Bostro

¨m,P.,Wu,J.,Jedrychowski,M.P.,Korde,A.,Ye,L.,Lo,J.C.,Rasbach,K.A.,Bostro

¨m,E.A.,Choi,J.H.,Long,J.Z.,etal.(2012).APGC1-a-dependentmyokinethatdrivesbrown-fat-likedevelopmentofwhitefatandthermogene-sis.Nature481,463–468.

Bouchard,C.,Rankinen,T.,andTimmons,J.A.(2011).Genomicsandgeneticsinthebiologyofadaptationtoexercise.Compr.Physiol.1,1603–1648.Boushel,R.,Gnaiger,E.,Calbet,J.A.,Gonza

′lez-Alonso,J.,Wright-Paradis,C.,Sondergaard,H.,Ara,I.,Helge,J.W.,andSaltin,B.(2011).Musclemitochon-drialcapacityexceedsmaximaloxygendeliveryinhumans.Mitochondrion11,303–307.

Bramble,D.M.,andLieberman,D.E.(2004).Endurancerunningandtheevolu-tionofHomo.Nature432,345–352.

Brooks,G.A.(2012).Bioenergeticsofexercisinghumans.Compr.Physiol.2,537–562.

Calbet,J.A.,Jensen-Urstad,M.,vanHall,G.,Holmberg,H.C.,Rosdahl,H.,andSaltin,B.(2004).Maximalmuscularvascularconductancesduringwholebodyuprightexerciseinhumans.J.Physiol.558,319–331.

Calvo,J.A.,Daniels,T.G.,Wang,X.,Paul,A.,Lin,J.,Spiegelman,B.M.,Stevenson,S.C.,andRangwala,S.M.(2008).Muscle-speci?cexpressionofPPARgammacoactivator-1alphaimprovesexerciseperformanceandin-creasespeakoxygenuptake.J.Appl.Physiol.104,1304–1312.

Chakravarthy,M.V.,andBooth,F.W.(2004).Eating,exercise,and‘‘thrifty’’ge-notypes:connectingthedotstowardanevolutionaryunderstandingofmodernchronicdiseases.J.Appl.Physiol.96,3–10.

Chin,E.R.(2005).RoleofCa2+/calmodulin-dependentkinasesinskeletalmus-cleplasticity.J.Appl.Physiol.99,414–423.

Coffey,V.G.,andHawley,J.A.(2007).Themolecularbasesoftrainingadapta-tion.SportsMed.37,737–763.

Coffey,V.G.,Zhong,Z.,Shield,A.,Canny,B.J.,Chibalin,A.V.,Zierath,J.R.,andHawley,J.A.(2006).Earlysignalingresponsestodivergentexercisestim-uliinskeletalmusclefromwell-trainedhumans.FASEBJ.20,190–192.Coyle,E.F.,Feltner,M.E.,Kautz,S.A.,Hamilton,M.T.,Montain,S.J.,Baylor,A.M.,Abraham,L.D.,andPetrek,G.W.(1991).Physiologicaland

Cell159,November6,2014a2014ElsevierInc.747

biomechanicalfactorsassociatedwitheliteendurancecyclingperformance.Med.Sci.SportsExerc.23,93–107.

Dempsey,J.A.,Sheel,A.W.,StCroix,C.M.,andMorgan,B.J.(2002).Respira-toryin?uencesonsympatheticvasomotorout?owinhumans.Respir.Physiol.Neurobiol.130,3–20.

Dempsey,J.A.,Blain,G.M.,andAmann,M.(2014).AretypeIII-IVmuscleaffer-entsrequiredforanormalsteady-stateexercisehyperpnoeainhumans?J.Physiol.592,463–474.

Drummond,M.J.,Fry,C.S.,Glynn,E.L.,Dreyer,H.C.,Dhanani,S.,Timmer-man,K.L.,Volpi,E.,andRasmussen,B.B.(2009).Rapamycinadministrationinhumansblocksthecontraction-inducedincreaseinskeletalmuscleproteinsynthesis.J.Physiol.587,1535–1546.

Egan,B.,andZierath,J.R.(2013).Exercisemetabolismandthemolecularregulationofskeletalmuscleadaptation.CellMetab.17,162–184.

Egerman,M.A.,andGlass,D.J.(2014).Signalingpathwayscontrollingskeletalmusclemass.Crit.Rev.Biochem.Mol.Biol.49,59–68.

Ellison,G.M.,Waring,C.D.,Vicinanza,C.,andTorella,D.(2012).Physiologicalcardiacremodellinginresponsetoenduranceexercisetraining:cellularandmolecularmechanisms.Heart98,5–10.

Fitts,R.H.,andHolloszy,J.O.(1978).Effectsoffatigueandrecoveryoncon-tractilepropertiesoffrogmuscle.J.Appl.Physiol.45,899–902.

Fiuza-Luces,C.,Garatachea,N.,Berger,N.A.,andLucia,A.(2013).Exerciseistherealpolypill.Physiology(Bethesda)28,330–358.

Fujii,N.,Hayashi,T.,Hirshman,M.F.,Smith,J.T.,Habinowski,S.A.,Kaijser,L.,Mu,J.,Ljungqvist,O.,Birnbaum,M.J.,Witters,L.A.,etal.(2000).Exerciseinducesisoform-speci?cincreasein5’AMP-activatedproteinkinaseactivityinhumanskeletalmuscle.Biochem.Biophys.Res.Commun.273,1150–1155.

Gaitanos,G.C.,Williams,C.,Boobis,L.H.,andBrooks,S.(1993).Humanmusclemetabolismduringintermittentmaximalexercise.J.Appl.Physiol.75,712–719.

Geng,T.,Li,P.,Okutsu,M.,Yin,X.,Kwek,J.,Zhang,M.,andYan,Z.(2010).PGC-1aplaysafunctionalroleinexercise-inducedmitochondrialbiogenesisandangiogenesisbutnot?ber-typetransformationinmouseskeletalmuscle.Am.J.Physiol.298,C572–C579.

Goldstein,M.S.(1961).Humoralnatureofthehypoglycemicfactorofmuscularwork.Diabetes10,232–234.

Gonza

′lez-Alonso,J.,andCalbet,J.A.(2003).Reductionsinsystemicandskel-etalmuscleblood?owandoxygendeliverylimitmaximalaerobiccapacityinhumans.Circulation107,824–830.

Gonza

′lez-Alonso,J.,Crandall,C.G.,andJohnson,J.M.(2008).Thecardiovas-cularchallengeofexercisingintheheat.J.Physiol.586,45–53.

Green,D.J.,Spence,A.,Rowley,N.,Thijssen,D.H.J.,andNaylor,L.H.(2012).Vascularadaptationinathletes:istherean‘athlete’sartery’?Exp.Physiol.97,295–304.

Hagerman,F.C.(1984).Appliedphysiologyofrowing.SportsMed.1,303–326.Hawley,J.A.(2002).Adaptationsofskeletalmuscletoprolonged,intenseendurancetraining.Clin.Exp.Pharmacol.Physiol.29,218–222.

Hawley,J.A.,Hargreaves,M.,andZierath,J.R.(2006).Signallingmechanismsinskeletalmuscle:roleinsubstrateselectionandmuscleadaptation.EssaysBiochem.42,1–12.

Hawley,J.A.,Burke,L.M.,Phillips,S.M.,andSpriet,L.L.(2011).Nutritionalmodulationoftraining-inducedskeletalmuscleadaptations.J.Appl.Physiol.110,834–845.

Hellsten,Y.,Nyberg,M.,Jensen,L.G.,andMortensen,S.P.(2012).Vasodilatorinteractionsinskeletalmuscleblood?owregulation.J.Physiol.590,6297–6305.

Hickson,R.C.(1980).Interferenceofstrengthdevelopmentbysimultaneouslytrainingforstrengthandendurance.Eur.J.Appl.Physiol.Occup.Physiol.45,255–263.

Hill,A.V.(1925).Thephysiologicalbasisofathleticrecords.Nature116,544–548.

748Cell159,November6,2014a2014ElsevierInc.

Hochachka,P.W.,Rupert,J.L.,andMonge,C.(1999).Adaptationandconser-vationofphysiologicalsystemsintheevolutionofhumanhypoxiatolerance.Comp.Biochem.Physiol.AMol.Integr.Physiol.124,1–17.

Hoier,B.,andHellsten,Y.(2014).Exercise-inducedcapillarygrowthinhumanskeletalmuscleandthedynamicsofVEGF.Microcirculation21,301–314.Holloszy,J.O.(1967).Biochemicaladaptationsinmuscle.Effectsofexerciseonmitochondrialoxygenuptakeandrespiratoryenzymeactivityinskeletalmuscle.J.Biol.Chem.242,2278–2282.

Hood,D.A.,Irrcher,I.,Ljubicic,V.,andJoseph,A.M.(2006).Coordinationofmetabolicplasticityinskeletalmuscle.J.Exp.Biol.209,2265–2275.Hoppeler,H.,Baum,O.,Lurman,G.,andMueller,M.(2011).Molecularmech-anismsofmuscleplasticitywithexercise.Compr.Physiol.1,1383–1412.Ja

¨ger,S.,Handschin,C.,St-Pierre,J.,andSpiegelman,B.M.(2007).AMP-activatedproteinkinase(AMPK)actioninskeletalmuscleviadirectphosphor-ylationofPGC-1a.Proc.Natl.Acad.Sci.USA104,12017–12022.

Jensen,T.E.,andRichter,E.A.(2012).Regulationofglucoseandglycogenmetabolismduringandafterexercise.J.Physiol.590,1069–1076.

Jeppesen,J.,andKiens,B.(2012).Regulationandlimitationstofattyacidoxidationduringexercise.J.Physiol.590,1059–1068.

Jeukendrup,A.E.(2003).Modulationofcarbohydrateandfatutilizationbydiet,exerciseandenvironment.Biochem.Soc.Trans.31,1270–1273.

Joyner,M.J.,andCoyle,E.F.(2008).Enduranceexerciseperformance:thephysiologyofchampions.J.Physiol.586,35–44.

Joyner,M.J.,andGreen,D.J.(2009).Exerciseprotectsthecardiovascularsystem:effectsbeyondtraditionalriskfactors.J.Physiol.587,5551–5558.Kelly,D.P.,andScarpulla,R.C.(2004).Transcriptionalregulatorycircuitscon-trollingmitochondrialbiogenesisandfunction.GenesDev.18,357–368.Lin,J.,Wu,H.,Tarr,P.T.,Zhang,C.Y.,Wu,Z.,Boss,O.,Michael,L.F.,Puig-server,P.,Isotani,E.,Olson,E.N.,etal.(2002).Transcriptionalco-activatorPGC-1alphadrivestheformationofslow-twitchmuscle?bres.Nature418,797–801.

Lin,J.,Handschin,C.,andSpiegelman,B.M.(2005).MetaboliccontrolthroughthePGC-1familyoftranscriptioncoactivators.CellMetab.1,361–370.Liu,Z.,Jahn,L.A.,Wei,L.,Long,W.,andBarrett,E.J.(2002).AminoacidsstimulatetranslationinitiationandproteinsynthesisthroughanAkt-indepen-dentpathwayinhumanskeletalmuscle.J.Clin.Endocrinol.Metab.87,5553–5558.

MacDougall,J.D.,Tuxen,D.,Sale,D.G.,Moroz,J.R.,andSutton,J.R.(1985).Arterialbloodpressureresponsetoheavyresistanceexercise.J.Appl.Phys-iol.58,785–790.

Mathai,A.S.,Bonen,A.,Benton,C.R.,Robinson,D.L.,andGraham,T.E.(2008).Rapidexercise-inducedchangesinPGC-1alphamRNAandproteininhumanskeletalmuscle.J.Appl.Physiol.105,1098–1105.

McGee,S.L.,andHargreaves,M.(2010).AMPK-mediatedregulationoftran-scriptioninskeletalmuscle.Clin.Sci.118,507–518.

McGee,S.L.,andHargreaves,M.(2011).Histonemodi?cationsandexerciseadaptations.J.Appl.Physiol.110,258–263.

McGee,S.L.,Swinton,C.,Morrison,S.,Gaur,V.,Campbell,D.E.,Jorgensen,S.B.,Kemp,B.E.,Baar,K.,Steinberg,G.R.,andHargreaves,M.(2014).CompensatoryregulationofHDAC5inmusclemaintainsmetabolicadaptiveresponsesandmetabolisminresponsetoenergeticstress.FASEBJ.28,3384–3395.

Myers,J.,Prakash,M.,Froelicher,V.,Do,D.,Partington,S.,andAtwood,J.E.(2002).Exercisecapacityandmortalityamongmenreferredforexercisetesting.N.Engl.J.Med.346,793–801.

Narkar,V.A.,Downes,M.,Yu,R.T.,Embler,E.,Wang,Y.X.,Banayo,E.,Mihay-lova,M.M.,Nelson,M.C.,Zou,Y.,Juguilon,H.,etal.(2008).AMPKandPPARdeltaagonistsareexercisemimetics.Cell134,405–415.

Neel,J.V.(1962).Diabetesmellitus:a‘‘thrifty’’genotyperendereddetrimentalby‘‘progress’’?Am.J.Hum.Genet.14,353–362.

Neufer,P.D.,andDohm,G.L.(1993).ExerciseinducesatransientincreaseintranscriptionoftheGLUT-4geneinskeletalmuscle.Am.J.Physiol.265,C1597–C1603.

Olson,E.N.,andWilliams,R.S.(2000).Remodelingmuscleswithcalcineurin.Bioessays22,510–519.

Parolin,M.L.,Chesley,A.,Matsos,M.P.,Spriet,L.L.,Jones,N.L.,andHeigen-hauser,G.J.(1999).RegulationofskeletalmuscleglycogenphosphorylaseandPDHduringmaximalintermittentexercise.Am.J.Physiol.277,E890–E900.

Pedersen,B.K.,Steensberg,A.,Fischer,C.,Keller,C.,Keller,P.,Plomgaard,P.,Febbraio,M.,andSaltin,B.(2003).Searchingfortheexercisefactor:isIL-6acandidate?J.MuscleRes.CellMotil.24,113–119.

Pedersen,L.,Olsen,C.H.,Pedersen,B.K.,andHojman,P.(2012).Muscle-derivedexpressionofthechemokineCXCL1attenuatesdiet-inducedobesityandimprovesfattyacidoxidationinthemuscle.Am.J.Physiol.Endocrinol.Metab.302,E831–E840.

Perry,C.G.,Lally,J.,Holloway,G.P.,Heigenhauser,G.J.,Bonen,A.,andSpriet,L.L.(2010).RepeatedtransientmRNAburstsprecedeincreasesintranscriptionalandmitochondrialproteinsduringtraininginhumanskeletalmuscle.J.Physiol.588,4795–4810.

Pette,D.,andStaron,R.S.(2000).Myosinisoforms,muscle?bertypes,andtransitions.Microsc.Res.Tech.50,500–509.

Phillips,S.M.(2014).Abriefreviewofcriticalprocessesinexercise-inducedmuscularhypertrophy.SportsMed.44(Suppl1),S71–S77.

Philp,A.,Hamilton,D.L.,andBaar,K.(2011).Signalsmediatingskeletalmus-cleremodelingbyresistanceexercise:PI3-kinaseindependentactivationofmTORC1.J.Appl.Physiol.110,561–568.

Poole,D.C.,andErickson,H.H.(2011).Highlyathleticterrestrialmammals:horsesanddogs.Compr.Physiol.1,1–37.

Potthoff,M.J.,Wu,H.,Arnold,M.A.,Shelton,J.M.,Backs,J.,McAnally,J.,Ri-chardson,J.A.,Bassel-Duby,R.,andOlson,E.N.(2007).HistonedeacetylasedegradationandMEF2activationpromotetheformationofslow-twitchmyo-?bers.J.Clin.Invest.117,2459–2467.

Puigserver,P.,Rhee,J.,Lin,J.,Wu,Z.,Yoon,J.C.,Zhang,C.Y.,Krauss,S.,Mootha,V.K.,Lowell,B.B.,andSpiegelman,B.M.(2001).Cytokinestimulationofenergyexpenditurethroughp38MAPkinaseactivationofPPARgammacoactivator-1.Mol.Cell8,971–982.

Rao,R.R.,Long,J.Z.,White,J.P.,Svensson,K.J.,Lou,J.,Lokurkar,I.,Jedry-chowski,M.P.,Ruas,J.L.,Wrann,C.D.,Lo,J.C.,etal.(2014).Meteorin-likeisahormonethatregulatesimmune-adiposeinteractionstoincreasebeigefatthermogenesis.Cell157,1279–1291.

Richter,E.A.,andHargreaves,M.(2013).Exercise,GLUT4,andskeletalmus-cleglucoseuptake.Physiol.Rev.93,993–1017.

Roberts,L.D.,Bostro

¨m,P.,O’Sullivan,J.F.,Schinzel,R.T.,Lewis,G.D.,Dejam,A.,Lee,Y.-K.,Palma,M.J.,Calhoun,S.,Georgiadi,A.,etal.(2014).b-Amino-isobutyricacidinducesbrowningofwhitefatandhepaticb-oxidationandisinverselycorrelatedwithcardiometabolicriskfactors.CellMetab.19,96–108.Romijn,J.A.,Coyle,E.F.,Sidossis,L.S.,Gastaldelli,A.,Horowitz,J.F.,Endert,E.,andWolfe,R.R.(1993).Regulationofendogenousfatandcarbohydratemetabolisminrelationtoexerciseintensityandduration.Am.J.Physiol.265,E380–E391.

Rose,A.J.,andHargreaves,M.(2003).ExerciseincreasesCa2+-calmodulin-dependentproteinkinaseIIactivityinhumanskeletalmuscle.J.Physiol.553,303–309.

Rowe,G.C.,El-Khoury,R.,Patten,I.S.,Rustin,P.,andArany,Z.(2012).PGC-1aisdispensableforexercise-inducedmitochondrialbiogenesisinskeletalmuscle.PLoSONE7,e41817.

Ruas,J.L.,White,J.P.,Rao,R.R.,Kleiner,S.,Brannan,K.T.,Harrison,B.C.,Greene,N.P.,Wu,J.,Estall,J.L.,Irving,B.A.,etal.(2012).APGC-1aisoform

inducedbyresistancetrainingregulatesskeletalmusclehypertrophy.Cell151,1319–1331.

Saltin,B.,andA

?strand,P.O.(1967).Maximaloxygenuptakeinathletes.J.Appl.Physiol.23,353–358.

Saltin,B.,Henriksson,J.,Nygaard,E.,Andersen,P.,andJansson,E.(1977).Fibertypesandmetabolicpotentialsofskeletalmusclesinsedentarymanandendurancerunners.Ann.NYAcad.Sci.301,3–29.

Scarpulla,R.C.(2006).Nuclearcontrolofrespiratorygeneexpressioninmammaliancells.J.Cell.Biochem.97,673–683.

Schiaf?no,S.,andReggiani,C.(1996).Fibertypesinmammalianskeletalmus-cles.Physiol.Rev.76,371–423.

Schlegel,A.,andStainier,D.Y.(2007).Lessonsfrom‘‘lower’’organisms:whatworms,?ies,andzebra?shcanteachusabouthumanenergymetabolism.PLoSGenet.3,e199.

Sharp,N.C.(1997).Timedrunningspeedofacheetah(Acinonyxjubatus).J.Zool.(Lond.)241,493–494.

Spriet,L.L.(2014).Newinsightsintotheinteractionofcarbohydrateandfatmetabolismduringexercise.SportsMed.44(Suppl1),S87–S96.

Tavi,P.,andWesterblad,H.(2011).TheroleofinvivoCa2+signalsactingonCa2+-calmodulin-dependentproteinsforskeletalmuscleplasticity.J.Physiol.589,5021–5031.

vanLoon,L.J.,Thomason-Hughes,M.,Constantin-Teodosiu,D.,Koopman,R.,Greenhaff,P.L.,Hardie,D.G.,Keizer,H.A.,Saris,W.H.,andWagenmakers,A.J.(2005).Inhibitionofadiposetissuelipolysisincreasesintramuscularlipidandglycogenuseinvivoinhumans.Am.J.Physiol.Endocrinol.Metab.289,E482–E493.

Wang,Y.-X.,Zhang,C.-L.,Yu,R.T.,Cho,H.K.,Nelson,M.C.,Bayuga-Ocampo,C.R.,Ham,J.,Kang,H.,andEvans,R.M.(2004).Regulationofmus-cle?bertypeandrunningendurancebyPPARdelta.PLoSBiol.2,e294.Wasserman,D.H.(2009).Fourgramsofglucose.Am.J.Physiol.Endocrinol.Metab.296,E11–E21.

Widegren,U.,Jiang,X.J.,Krook,A.,Chibalin,A.V.,Bjo

¨rnholm,M.,Tally,M.,Roth,R.A.,Henriksson,J.,Wallberg-henriksson,H.,andZierath,J.R.(1998).Divergenteffectsofexerciseonmetabolicandmitogenicsignalingpathwaysinhumanskeletalmuscle.FASEBJ.12,1379–1389.

Willis,B.L.,Gao,A.,Leonard,D.,De?na,L.F.,andBerry,J.D.(2012).Midlife?tnessandthedevelopmentofchronicconditionsinlaterlife.Arch.Intern.Med.172,1333–1340.

Winder,W.W.,andHardie,D.G.(1996).Inactivationofacetyl-CoAcarboxylaseandactivationofAMP-activatedproteinkinaseinmuscleduringexercise.Am.J.Physiol.270,E299–E304.

Wrann,C.D.,White,J.P.,Salogiannnis,J.,Laznik-Bogoslavski,D.,Wu,J.,Ma,D.,Lin,J.D.,Greenberg,M.E.,andSpiegelman,B.M.(2013).ExerciseinduceshippocampalBDNFthroughaPGC-1a/FNDC5pathway.CellMetab.18,649–659.

Wu,H.,Kanatous,S.B.,Thurmond,F.A.,Gallardo,T.,Isotani,E.,Bassel-Duby,R.,andWilliams,R.S.(2002).RegulationofmitochondrialbiogenesisinskeletalmusclebyCaMK.Science296,349–352.

Yang,Y.,Creer,A.,Jemiolo,B.,andTrappe,S.(2005).Timecourseofmyogenicandmetabolicgeneexpressioninresponsetoacuteexerciseinhumanskeletalmuscle.J.Appl.Physiol.98,1745–1752.

Zacharewicz,E.,Lamon,S.,andRussell,A.P.(2013).MicroRNAsinskeletalmuscleandtheirregulationwithexercise,ageing,anddisease.Front.Physiol.4,266.http://dx.doi.org/10.3389/fphys.2013.00266.

Zierath,J.R.,andHawley,J.A.(2004).Skeletalmuscle?bertype:in?uenceoncontractileandmetabolicproperties.PLoSBiol.2,e348.

Cell159,November6,2014a2014ElsevierInc.749

本文来源:https://www.bwwdw.com/article/7h55.html

Top