纳米材料双语翻译

更新时间:2023-11-23 00:24:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

姓名: 学号:1012100105 班级:化学1001

Photoluminescence properties of LaF3: Eu3+nanoparticles

prepared by refluxing method

光致发光性质:铕掺杂的三氟化镧纳米粒子的回流制备方法

Rare earth ions-doped nanostructure materials have been widely investigated because of their sharp and intense emission originating from the electronic transitions within the 4f shell of the doping ions and their applications in many fields. In comparison with the conventional oxide-based luminescent materials, fluorides are advantageous as fluorescent host materials owing to their low vibrational energies and the subsequent minimization of the quenching of the excited state of the rare-earth ions[1]. Hence, rare earth ions-doped nanostructural fluorides have attracted extensive interests due to their potential applications in lighting and displays[2,3], upconverters[3?8], magnetic resonance imaging (MRI)[9], biological fluorescent labels[10?14],optical amplifiers[15], transparent glass[16], scintillators[17], photonic crystals[18], etc. Among these fluorides, LaF3 host matrix exhibits the photochemical stability, the biocompatibility, and the relative low crystalline temperature, and its phonon energy is as low as 350 cm?1[19,20]. Rare earth ions (Eu3+, Ce3+, Tb3+, Nd3+, Er3+, Pr3+, Ho3+, Yb3+, Tm3+) doped LaF3 nanoparticles[21?24], LaF3 triangular nanoplates[24,25], and silica-coated[19], or organic ligands[20,26]modified LaF3 luminescent nanoparticles have been reported in literatures.

稀土离子掺杂的纳米结构材料已被广泛研究,因为其尖锐和激烈的排放来源于电子跃迁的4f内壳的掺杂离子和其在许多领域的应用。在与传统的氧化物系发光材料相比,氟化物是有利的,因为由于其低的振动能级和随后的最小化的稀土离子的激发态猝灭,并且是荧光基质材料。因此,稀土离子掺杂的纳米结构氟化物已经吸引了广泛的兴趣,由于其潜在的应用在照明和显示,上变频器,磁共振成像(MRI ),生物荧光标记,光放大器,透明玻璃,闪烁晶体,光子晶体等。在这些氟化物中,三氟化镧基质具有光化学稳定性,生物相容性,和相对较低的结晶温度,它的声子能量低至350 cm-1处。地球离子稀土(铕,铈,铽,钕,铒,镨,钬,镱,铥)掺杂三氟化镧纳米粒子,三氟化镧三角形纳米片,和硅涂层,

或有机配体修饰三氟化镧发光纳米粒子已经被报道文献中。

Rare earth ions-doped LaF3 at nanoscale can be synthesized by using coprecipitation technique[11,15], single-source precursor (SSP) strategy[24], polyol method[22], and hydrothermal method[27]. Veggel and coworkers have systematically investigated the synthesis, surface modification, and luminescent properties of rare earth ions-doped LaF3 nanoparticles[18?21]. Using lanthanide salts and sodium fluoride or ammonium fluoride as starting materials, they synthesized the doped LaF3 nanoparticles in ethanol/water medium at 75oC by using coprecipitation technique[28]. The role of ethanol as solvent can adjust the solubility of sodium fluoride or ammonium fluoride in solution and control the growth of the doped LaF3 particles[29]. However, the agglomeration of lanthanide-doped LaF3 nanocrystals occurs without adding the stabilizer because the nanocrystals tend to decrease the exposed surface in order to lower the surface energy. Meanwhile, the reaction temperature is about 75oC because of the low boiling point (b.p.) of ethanol (~78.4oC), which is disadvantageous to increasing the crystallinity and luminescent intensity of lanthanide-doped LaF3 nanoparticles.

稀土离子掺杂可以采用共沉淀技术,单源前驱体(SSP)的策略,多元醇法和水热法合成纳米级三氟化镧。Veggel和他的同事已经系统地研究了合成,表面改性,稀土离子掺杂的纳米粒子和发光性能。使用镧系元素的盐,氟化钠或氟化铵作为起始原料,合成掺杂纳米粒子在乙醇/水介质中,在75℃ ,采用共沉淀技术。乙醇为溶剂的作用,可以调整氟化钠或氟化铵溶液中的溶解度,并控制掺杂三氟化镧粒子的生长。然而,镧系元素掺杂三氟化镧纳米晶体的凝集不添加稳定剂,因为降低的倾向,以降低表面能的暴露表面的纳米晶体的情况下发生。同时,反应温度为约75℃,由于低沸点(bp)的乙醇(~78.4℃),这是不利的镧系元素掺杂的纳米粒子的结晶度和发光强度的增加。

In this article, the europium-doped LaF3 nanoparticles were prepared by refluxing method in glycerol/water mix-ture and characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrum (EDS), UV-vis diffuse reflec-tance spectrum (DRS), and photoluminescence (PL) spectra. The glycerol/water system can not only alter the solubility of fluorides but also increase the reaction temperature and consequently improve the

crystallinity of luminescent nanoparticles. Furthermore, as a polyol, the glycerol (b.p.,290oC) acts as solvent, stabilizer, and chelating agent,which can bind to the surface of the growing nanocrystals to limit the growth of the nanoparticles[22]. Hence, no other capping agent is needed, and the as-prepared nanoparticles are water-soluble due to the polar functional groups of glycerol capped on the surface of the nanoparticles.

在本文中,通过回流法在甘油/水混合物制备的掺杂铕的纳米粒子,其特征在于X-射线衍射(XRD),场发射扫描电子显微镜(FE-SEM),能量色散X射线谱(EDS),紫外-可见漫反射率谱(DRS),和光致发光光谱(PL)。甘油/水系统,不仅可以改变氟化物的溶解度,同时也提高反应温度,从而提高荧光纳米颗粒的结晶性。此外,作为多元醇,甘油(沸点290℃)作为溶剂,稳定剂,螯合剂,可以绑定到不断增长的纳米晶体的表面上,以限制的纳米粒子的生长。因此,没有其他的封端剂是必要的,并且所制备的纳米颗粒是水溶性的极性官能团封端的表面上的纳米颗粒甘油埃罗尔。

1.1 Preparation of LaF3: Eu3+ nanoparticles

铕掺杂的三氟化镧纳米粒子的制备

LaF3: Eu3+ nanoparticles were prepared by the refluxing method. Typically, stoichiometric weights of La2O3(99.99%) and Eu2O3(99.99%) were dissolved in diluted hydrochloric acid (HCl, analytical reagent, A.R.), and then the water in above solutions was distilled off by heating. The resulting lanthanide salts and a stoichiometric amount of NH4F (96.0%, A.R.) were added to the 100 ml of glycerol/water mixture (volume ratio=1:1), and the metal ion concentration was kept at 0.02 mol/L. The mixture was heated to boil under vigorous stirring and refluxed at the boiling temperature for 2h, and the temperature of the boiling mixture is about 110oC. Thereafter, the suspension was cooled down to room temperature and diluted with excessive ethanol followed by centrifugation. In order to remove residual glycerol, the solid was resuspended in ethanol for three times and centrifuged again. Finally, the solid was dried at 70oC for 12h.

铕掺杂的三氟化镧纳米粒子的回流制备方法。通常情况下,溶解在稀盐酸(盐酸,分析试剂,AR)的氧化镧(99.99%),氧化铕(99.99%)的化学计量比的权重,然后在上述溶液中的水,通过加热蒸馏除去。由此产生的镧系元素的盐和化学计算量的氟化铵(96.0%,AR)加入到100毫升的甘油/水混合物(体积比

=1:1),和金属离子浓度保持在0.02 mol/ L。在剧烈搅拌下将混合物加热至沸腾,并回流2小时时的沸腾温度和处于沸点的混合物的温度大约是110℃ 。此后,将悬浮液冷却至室温,并用过量的乙醇,然后通过离心稀释。为了除去残留的丙三醇,将固体再悬浮在乙醇中3次,并再次离心。最后,将固体在70℃下12小时干燥。

1.2 Characterization of LaF3: Eu3+ nanoparticles

铕掺杂的三氟化镧纳米粒子的表征

X-ray diffraction (XRD) was carried out on a Y-500 diffractometer with Cu Kα radiation (λ=0.15406 nm). Scanning electron microscopy micrographs were obtained by using a field emission scanning electron microscope (FE-SEM,XL30, Philips). UV-Vis diffuse reflectance spectrum was obtained by using a UV/Vis spectrophotometer (V-550,JASCO, Japan) equipped with an integrating sphere attachment (ISV-469). BaSO4 was used as a reference sample. The excitation and emission spectra were taken on an F-4500 spectrophotometer equipped with a 150 W xenon lamp as the excitation source.

X-射线衍射(XRD)进行的Y -500衍射仪上使用铜Kα射线(λ= 0.15406 nm)。扫描电子显微镜的显微照片,通过使用发射扫描电子显微镜(FE - SEM , XL30,飞利浦)获得。紫外-可见漫反射光谱通过使用紫外/可见分光光度计( V - 550 , JASCO ,日本)积分球附件( ISV -469 )配备的得到。硫酸钡用作参考样品,F-4500型分光光度计配备有150W的氙灯作为激发光源以此来激发和发射光谱。

2.1 XRD analysis

The results of XRD indicate that LaF3 and La0.85Eu0.15F3 nanoparticles are well crystallized, and the patterns are in good agreement with hexagonal structure (Space group: P3cl(165), Cell=0.7187×0.7187×0.735 nm3, α=β=90o, γ=120o) known from bulk LaF3(3,JCPDS card No.32-0483).

XRD结果表明,三氟化镧和纳米La0.85Eu0.15F3的结晶图案吻合,而且是良好六方结构(空间群: P3 CL( 165) ,细胞= 0.7187 × 0.7187 × 0.735 NM3 ,α = β = 90°,γ = 120 o)称为散装三氟化镧(3 JCPDS卡32号-0483 ) 。

本文来源:https://www.bwwdw.com/article/d5gv.html

Top