芯片制造-半导体工艺教程

更新时间:2024-02-03 12:51:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

芯片制造-半导体工艺教程

芯片制造-半导体工艺教程 Microchip Fabrication

----A Practical Guide to Semicondutor Processing

目录:

第一章:半导体工业[1] [2] [3]

第二章:半导体材料和工艺化学品[1] [2] [3]

第三章:晶圆制备[1] [2] [3]

第四章:芯片制造概述[1] [2] [3]

第五章:污染控制[1] [2] [3] [4] [5] [6]

第六章:工艺良品率[1] [2]

第七章:氧化

第八章:基本光刻工艺流程-从表面准备到曝光

第九章:基本光刻工艺流程-从曝光到最终检验

第十章:高级光刻工艺

第十一章:掺杂

第十二章:淀积

第十三章:金属淀积

第十四章:工艺和器件评估

第十五章:晶圆加工中的商务因素

第十六章:半导体器件和集成电路的形成

第十七章:集成电路的类型

第十八章:封装

附录:术语表

[4] [5] 1

芯片制造-半导体工艺教程

#1 第一章 半导体工业--1

芯片制造-半导体工艺教程 点击查看 章节目录 by r53858 概述

本章通过历史简介,在世界经济中的重要性以及纵览重大技术的发展和其成为世界领导工业的发展趋势来介绍半导体工业。并将按照产品类型介绍主要生产阶段和解释晶体管结构与集成度水平。

目的

完成本章后您将能够:

1. 描述分立器件和集成电路的区别。

2. 说明术语 ―固态,‖ ―平面工艺‖,――N‖‖型和―P‖型半导体材料。 3. 列举出四个主要半导体工艺步骤。

4. 解释集成度和不同集成水平电路的工艺的含义。 5. 列举出半导体制造的主要工艺和器件发展趋势。

一个工业的诞生

电信号处理工业始于由Lee Deforest 在1906年发现的真空三极管。1真空三极管使得收音机, 电视和其它消费电子产品成为可能。它也是世界上第一台电子计算机的大脑,这台被称为电子数字集成器和计算器(ENIAC)的计算机于1947年在宾西法尼亚的摩尔工程学院进行首次演示。

这台电子计算机和现代的计算机大相径庭。它占据约1500平方英尺,重30吨,工作时产生大量的热,并需要一个小型发电站来供电,花费了1940年时的400, 000美元。ENIAC的制造用了19000个真空管和数千个电阻及电容器。 真空管有三个元件,由一个栅极和两个被其栅极分开的电极在玻璃密封的空间中构成(图1.2)。密封空间内部为真空,以防止元件烧毁并易于电子的====移动。

真空管有两个重要的电子功能,开关和放大。 开关是指电子器件可接通和切断电流; 放大则较为复杂,它是指电子器件可把接收到的信号放大,并保持信号原有特征的功能。

真空管有一系列的缺点。体积大,连接处易于变松导致真空泄漏、易碎、要求相对较多的电能来运行,并且元件老化很快。ENIAC 和其它基于真空管的计算机的主要缺点是由于真空管的烧毁而导致运行时间有限。

这些问题成为许多实验室寻找真空管替代品的动力,这个努力在1947年12月23曰得以实现。贝尔实验室的三位科学家演示了由半导体材料锗制成的电子放大器。

2

芯片制造-半导体工艺教程

这种器件不但有真空管的功能,而且具有固态(无真空)、体积小、重量轻,、耗电低并且寿命长的优点,起初命名为 ―传输电阻器‖而后很快更名为晶体管(transistor)。

John Barden, Walter Brattin 和William Shockley, 这三位科学家因他们的这一发明而被授予1956年的诺贝尔物理奖。

固态时代

第一个晶体管和今天的高密度集成电路相去甚远,但它和它的许多著名的后裔赋予了固态电子时代的诞生。除晶体管之外, 固态技术还用于制造二极管、电阻器和电容器。二极管为两个元件的器件在电路中起到开关的作用;电阻器是单元件的器件承担限制电流的作用.;电容器为两个元件的器件在电路中起存储电荷的作用,在有些电路中应用这种技术制造保险丝。有关这些概念和器件工作原理的解释请参见第14章。

这些每个芯片中只含有一个器件的器件称为分立器件(图1.4)。大多数的分立器件在功能和制造上比集成电路有较少的要求。大体上,分立器件不被认为是尖端产品,然而它们却用于最精密复杂的电子系统中。在1998年它们的销售额占全部半导体器件销售额的12%。2到20世纪50年代的早期半导体工业进入了一个非常活跃的时期,为晶体管收音机和晶体管计算机提供器件。

集成电路

分立器件的统治地位在1959年走到了尽头。那一年,在得州仪器公司工作的新工程师 Jacky Kilby 在一块锗半导体材料上制成了一个完整的电路。他的发明由几个晶体管、二极管、电容器和利用锗芯片天然电阻的电阻器组成。这个发明就是集成电路(integrated circuit),第一次成功地在一块半导体基材上做出完整的电路。

Kilby的电路并不是现今所普遍应用的形式,它是经Robert Noyce,然后最终在Fairchild Camera完成的。图1.5是Kilby的电路,我们可以注意到器件是用单独的线连接起来的。

早些时候在Fairchild Camera的Jean Horni 就已经开发出一种在芯片表面上形成电子结来制做晶体管的平面制作工艺(图1.6)。平面形式是利用了硅易于形成氧化硅并且为非导体(电绝缘体)的优点。Horni的晶体管使用了铝蒸汽镀膜并使之形成适当的形状来作器件的连线,这种技术称为平面技术(planar technology)。

Horni应用这种技术把预先在硅表面上形成的器件连接起来。

Kilby和Horni的集成电路成为所有集成电路的模式,这种技术不仅符合当时的需要,而且也是小型化和推动工业发展的生产有效成本制造业的根源。Kilby和Horni共同享有集成电路的专利。

图1.5 Kibly书中记载的集成电路

工艺和产品趋势

3

芯片制造-半导体工艺教程

从1947年开始,半导体工业就已经呈现出在新工艺和工艺提高上的持续发展。工艺的提高导致了具有更高集成度和可靠性的集成电路的产生,从而推动了电子工业的革命。这些工艺的改进归为两大类:工艺和结构。工艺的改进是指以更小尺寸来制造器件和电路,并使之具有有更高的密度,更多数量和更高的可靠性。结构的改进是指新器件设计上的发明使电路的性能更好,实现更佳的能耗控制和更高的可靠性。

集成电路中器件的尺寸和数量是IC发展的两个共同标志。器件的尺寸是以设计中最小尺寸来表示的,叫做特征图形尺寸, 通常用微米来表示。一微米为1/10,000厘米或约为人头发的1/100。

英特尔公司的创始人之一Gordon Moore在1964年预言集成电路的密度会每十八个月翻一番,这个预言后来成为著名的摩尔定律并被证明十分准确(图1.7)。 集成度水平表示电路的密度,也就是电路中器件的数量。集成度水平(integration level)(图1.8)的范围从小规模集成(SSI)到超大规模(ULSI)集成电路,ULSI集成电路有时称为甚大规模集成电路(VVLSI). 大众刊物上称最新的产品为百万芯片(megachips)。 除集成规模外,存储器电路还由其存储比特的数量来衡量(一个4兆的存储器可存储四百万比特),逻辑电路的规模经常用栅极(栅极是逻辑电路中基本的功能元件)的数量来评价。

#1 第一章 半导体工业—2

Quote:

4

芯片制造-半导体工艺教程

芯片制造-半导体工艺教程 点击查看 章节目录

特征图形尺寸的减小 by r53858

从小规模集成电路发展到今天的百万芯片,其中单个元件特征图形尺寸的减小起了重要的推动作用。这得益于光刻和多层连线技术的极大提高。图1.9为二十五年中实际和预期的特征图形尺寸的情况。半导体工业协会(SIA)预期到2012年特征图形尺寸会减小至50纳米(0.05微米)。3 元件尺寸的减小所带来的好处是电路密度的增加。

我们可以用一个家庭住宅区的布局做个比喻来解释这个发展趋势。住宅区的密度就取决于房屋大小, 占地大小和街道宽度。如果要居住更多的人口,我们可以增加住宅区的面积(增加芯片区域),另一种可能则是减小单个房屋的尺寸并使它们占地较小。我们也可以用减小街道大小的办法来增加密度,然而, 到一定程度时街道就不能再被减小了,或是就不够汽车通行的宽度了,而要保持房子的可居住性,房屋也不能无限制地减小,此时一个办法就是用公寓楼来取代单个房屋。所有的这些办法都应用在了半导体技术中。

特征尺寸的减小和电路密度的增大带来了很多益处。在电路的性能方面是电路速度的提高,传输距离的缩短和单个器件所占空间的减小使得信息通过芯片时所用的时间缩短,这种更快的性能使那些曾经等待计算机来完成一个简单工作的人受益非浅。电路密度的提高还使芯片或电路耗电量更小,要小型电站来维持运行的ENIAC已被靠使用电池的功能强大的便携式电脑所取代。

芯片和晶圆尺寸的增大

芯片密度从SSI发展到ULSI的进步推动了更大尺寸芯片的开发。分立器件和SSI芯片边长平均约为100mils(0.1英寸), 而ULSI芯片每边长为500 mils(0.5英寸)或更大。IC是在称为晶圆(wafer)的薄硅片(或其它半导体材料薄片)上制造成的。在圆形的晶圆上制造方形或长方形的芯片导致在晶圆的边缘处剩余下一些不可使用的区域,当芯片的尺寸增大时这些不可使用的区域也随之增大。为了弥补这种损失,半导体业界采用了更大尺寸的晶圆。随着芯片的尺寸增大, 1960年时的1英寸直径的晶圆已经被200毫米和300毫米(8英寸和12英寸)的晶圆所取代。

缺陷密度的减小

随着特征图形尺寸的减小,在制造工艺中减小缺陷密度和缺陷尺寸的需要就变得十分关键。在尺寸为100微米的晶体管上有一个1微米的灰尘可能不是问题,但对于一个1微米的晶体管来说会是一个导致元件失效的致命缺陷(图1.11)。正因为如此,污染控制的需要使得建造一个IC制造厂的花费升至十亿美元。

5

芯片制造-半导体工艺教程

内部连线水平的提高

元件密度的增加带来了连线问题。在住宅区的比喻中, 用来增加密度的策略之一是减小街道的宽度,但是到一定的程度时街道对于汽车的通行来说就会太窄。同样的事情也会发生在IC设计中,元件密度的增加和紧密封装减小了连线所需的空间。解决方案是在元件形成的表面上使用多层绝缘层和导电层相互叠加的多层连线。

SIA的发展方向

主要的IC参数是相互关连的。摩尔定律预言了未来元件的密度,由此引发了集成度水平(元件密度)、芯片尺寸、缺陷密度(和尺寸)和所要求的内部连线数量水平的计算。半导体工业协会以一系列―路线图‖的形式对这些及其它关键器件和产品参数的未来作了展望。

孔连接 M1=第一层金属 M2=第二层金属

图 1.12 经过平面化工艺具有两金属的VLSI典型结构的横切面, 它显示了经过平面化工艺后孔深的范围. (经Solid State Technology允许)

芯片成本

也许工艺和产品提高所带来的最大影响就是芯片的成本。图1.14展示了80年代时存储器芯片的成本逐年下降的情况。对于任何成熟的产品这个曲线都有代表性。价格开始时高,但随着技术的成熟和制造效率的提高价格会下降并最终达到稳定。虽然芯片的性能提高了,但价格却在持续地下降。在开始的30年中,半导体工业受到过2到5次经济冲击,这与铁路工业受到的冲击在同一时期。4影响芯片成本的因素将会在第15章讨论。

成本降低和性能提高这两个因素推动了固态电子在产品中的使用。到90年代时, 一个汽车所有的计算能力已经超过了第一架月球太空探测器,个人计算机更是令人鼓舞。今天,中等价位的台式机便有IBM在1970年制造的大型机的计算能力。图1.15说明了芯片的主要工业用途。 到2008年时, 全世界工业生产的晶体管将达到每个人十亿。5

半导体工业的发展

在整体上, 半导体工业一直在全世界范围连续增长。从它50年代诞生时起,它在全世界每年的销售额正在接近2000亿美元,其相应的供应商产业超过了300亿美元。6有趣的是, 虽然半导体工业显示出了成熟的迹象,但其增长速度还是

6

芯片制造-半导体工艺教程

高于其它成熟工业,这说明了它仍有很大的发展潜力。(图1.16)

图1.17为DRAM性能提高的一个例子,说明了多少卷的大百科全书可以被存储在更大容积的DRAM芯片中。

半导体工业的连续发展与进步使之在90年代中期时占据了世界主导地位,并超过汽车工业成为美国附加值最高的工业(图1.18)。

半导体工业的构成

电子工业可分为两个主要部分:半导体和系统(或产品)。半导体包括材料供应商、电路设计、芯片制造和半导体工业设备及化学品供应商。系统部分包括设计和生产众多基于半导体器件的、涉及到从消费类电子产品到太空飞船的产品。电子工业还涵盖了印刷电路板制造商。

半导体产业由两个主要部分组成。一部分是制造半导体固态器件和电路的企业,生产过程称为晶圆制造(wafer fabrication)。在这个行业中有三种类型的芯片供应商,一种是集设计、制造、封装和市场销售为一体的公司;另一种是做设计和晶圆市场的公司,它们从晶圆代工厂购买芯片;还有一种是晶圆代工厂, 它们可以为顾客生产多种类型的芯片。

以产品为终端市场的生产商和为内部使用的生产商都生产芯片。以产品为终端市场的生产商制造并在市场上销售芯片,以产品为内部使用的生产商它们的终端产品为计算器、通讯产品等等,生产的芯片用于它们自己的终端产品,其中一些企业也向市场销售芯片。还有一些生产专业的芯片内部使用,在 市场上购买其它的芯片。在80年代, 在以产品为内部使用的生产商中进行的芯片制造的比例有上升的趋势

#1 第一章 半导体工业—3

生产阶段 by r53858

固态器件的制造有四个不同的阶段。(图1.19) 它们是材料准备、晶体生长和晶圆准备、晶圆制造、封装。

在第一个阶段,材料准备(见第二章)是半导体材料的开采并根据半导体标准进行提纯。硅是以沙子为原料通过转化成为具有多晶硅结构的纯硅(图1.21)。 在第二个阶段,材料首先形成带有特殊的电子和结构参数的晶体,再进行晶体生长,之后,在晶体生长和晶圆准备(见第三章)工艺中,晶体被切割成称为晶圆的薄片,并进行表面处理(图1.21)。另外半导体工业也用锗和不同半导体材料的混合物来制作器件与电路。

材料准备 晶体生长与晶圆准备 晶圆制造 封装

第三个阶段是晶圆制造,也就是在其表面上形成器件或集成电路。在每个晶圆上通常可形成200到300个同样的器件,也可多至几千个。在晶圆上由分立器件或

7

芯片制造-半导体工艺教程

集成电路占据的区域叫做芯片。晶圆制造也可称为制造、FAB、芯片制造或是微芯片制造。晶圆的制造可有几千个步骤,它们可分为两个主要部分:前线工艺是晶体管和其它器件在晶圆表面上的形成;后线工艺是以金属线把器件连在一起并加一层最终保护层。

遵循晶圆制造过程,晶圆上的芯片已经完成,但是仍旧保持晶圆形式并 且未经测试。下一步每个芯片都需要进行电测(称为晶圆电测)来检测是否符合客户的要求。晶圆电测是晶圆制造的最后一步或是封装(packaging)的第一步。

二氧化硅(沙子) 含硅气体 硅反应炉 多晶硅

1.20 二氧化硅到半导体应用级硅的转化

多晶硅 硅晶体生长 硅晶圆

封装通过一系列的过程把晶圆上的芯片分割开然后将它们封装起来。封装起到保护芯片免于污染和外来伤害的作用,并提供坚固耐用的电气引脚以和电路板或电子产品相连。封装是在半导体生产厂的另一个部门来完成的。

绝大数的芯片是被单个地封装起来的,但是混合电路、多芯片模块(MCMs)或直接安装在电路板上(COB)的形式正在日趋增加。混合电路是在陶瓷基片上将半导体器件(分立和IC)和厚或薄膜电阻及导线还有其它电子元件组合起来的形式,这些技术将在第18章中作出解释。

开发的十年(1951-1960)

虽然固态电子的极大优点早已为人所知,但小型化带来的优越性直到20年后才被认识到。在二十世纪五十年代,工程师开始着手工作并制定了许多今天仍在使用的基本工艺和材料。

使半导体器件工作的结构是 ―PN结‖(图1.24),它由富含电子的区域(负极或N型)和相邻的富含空穴的区域(失去电子有正电性或P型)一起构成的(见第11章)。

晶体管要有两个结才能工作(见第16章)。早期商业化的晶体管是双极型的,并且到二十世纪七十年代一直占据统治地位。双极是指晶体管具有工作在正电流和负电流情况下的结构。其它制作固态晶体管的主要方法是场效应管(FET),William Shockley在1951公布了FET的工作原理。这种晶体管只用一种类型电流来工作所以又叫做单极器件。后来大量上市的FET是具有以一种称为金属氧化物(MOS)结构的晶体管。

William Shockley和贝尔实验室对半导体技术的传播有不可磨灭的功绩。Shockley在1955年离开了贝尔实验室并在加利福尼亚的Palo Alto创建了Shockley实验

8

芯片制造-半导体工艺教程

室。虽然他的实验室未能幸存下来,但是它在西海岸建立了半导体制造业并为后来著名的硅谷的奠定了基础。贝尔实验室对它的半导体技术授以许可证并转给制造公司, 这促进了半导体工业的腾飞。

早期的半导体器件是用锗材料来制造的。得州仪器公司在1954年引入了第一个硅晶体管改变了这一趋势。而在1956和1957年贝尔实验室的两个技术进步,扩散结和氧化掩膜平息了哪种材料会占主流的问题。

氧化掩膜的发展带来了硅的时代。二氧化硅(SO2)可在硅表面上均匀地生成,并且有和硅相近的膨胀系数,使得在进行高温处理时不会出现翘起变形, 二氧化硅还是绝缘材料可在硅表面上充当绝缘物。另外,它对形成N和P型区所需的掺杂物有良好的阻挡作用。

由于这些技术的进步,Fairchild Camera在1960年引入了平面技术。使用上面提到的技术可在制造过程中形成(扩散)和保护(二氧化硅)PN结。氧化掩膜的发展也使得可通过晶圆的表面形成两个PN结(图1.26),也就是它们都在一平面中。这种工艺将半导体技术引入了Robert Noyce的用薄膜连线的时代。

通过刻有图案的氧化层对晶圆参杂

金属导电层

图1.25 基本的硅平化工艺

双极型晶体管

外延层

晶圆

1.26 在外延层上形成的两次渗透的双极型晶体管

贝尔实验室又构思出了在晶圆的表面沉积一层称为外延层的高纯度膜,再在其上形成晶体管的技术(图1.27),使用这种技术可制做出更高速度的晶体管,并提供了一个使得在双极电路中元件封装更紧密的方案。 五十年代的确是半导体发展的黄金时期,几乎所有基本的工艺和材料都是在这个非常短的时期内开发出来的。在这十年里,由开始用锗材料制造小量的简单器件,发展到奠定了半导体未来的第一块集成电路和硅材料的基础。

工艺的十年(1961-1970)

二十世纪六十年代是工艺工程师和公司创建的时代。在五十年代价格下降的趋势

9

芯片制造-半导体工艺教程

就开始形成了,在六十年代, 涌现出许多新的芯片制造商,这使得工艺工程师需要开发高产量的工艺来制造低价格的芯片。在这十年里,技术随着工程师在硅谷、波士顿的128号路区域以及得克萨斯州的不同公司间的流动而传播。

在五十年代, 多数的半导体制造设备是由芯片制造商内部制造或改装的,同样,多数的化学品也是在按工业级水平采购而后在内部进行 ―清洁‖。 到了六十年代,芯片制造厂的数量猛增,并且工艺接近了吸引半导体特殊供应商的水平。 五十年代的许多关键人物创建了新公司。Robert Noycee 离开了Fairchild 建立了英特尔(与Andrew Grove,Gorden Moore一起), Charles Sporck也离开了Fairchild开始经营国家半导体公司,Signetics 成为了第一家专门从事IC制造的公司。新器件设计通常是公司开始的动力,然而, 价格的下跌是一个残酷的趋势,会将许多新老公司驱逐出局。

价格的下跌由于1963年时的塑封在硅器件上的使用而加速,也在同一年,RCA宣布开发出了绝缘场效应管(IFET),这为MOS工业的发展铺平了道路。RCA还制造出了第一个互补型MOS(CMOS)电路。 在七十年代,半导体制造从实验室小批量发展到了生产线的大批量制造,也形成了产量与利润之间的关系。

产品的十年(1971-1980)

在二十世纪七十年代的开始,半导体IC的制造主要在MSI的水平,向有利润并高产的LSI的发展在某种程度上受到了膜版引起的缺陷和由接触光刻机(Conact Aligner)造成的晶圆损伤的阻碍。事实上,现存的所有工艺在一方面或另一方面都代表着是更高水平电路产品的量产的障碍。

PERKIN和ELMER公司开发出了第一个实际应用的投射光刻机,从而解决了膜版和光刻机的缺陷问题。在这十年中,洁净间的结构和运行得到了提高,并出现了离子注入机, 用于高质量膜版的E-BEAM机, 用于晶圆光刻的膜版步进式光刻机(Stepper)开始出现。

工艺过程的自动化从SPIN/BAKE和DEVELOP/BAKE开始,从操作员控制发展到工艺过程的自动控制提高了产量和产品的一致性。对基于设备的工艺的依靠使得半导体工业水平上升到新高度,工业的销售额上升至每年100亿美元。 当工艺与设备结合时,这个时期的发展就面向了全世界,随着工艺的提高对固态器件物理有了更细致的理解,这使得全世界学习这一工艺的学生,未来的工程师们也掌握了这一技术。

自动化的十年(1981-1990)

来自市场的压力成为工艺过程自动化首要动力,其次是越来越多的工艺步骤。特征图形尺寸的每次减小都会带来新问题,如更多的金属层要求更多的工艺步骤。

10

芯片制造-半导体工艺教程

机器会按照预先设好的步骤自动处理晶圆,然后再回到传输器中。大多数的工艺实现自动化后,在二十世纪八十年代的焦点是在如何生产区域去掉操作工和如何实现材料的自动运输。由于人是主要污染源,所以要求将操作工减到最少;最严密的规程也不能控制人员搬移晶圆时产生的微粒污染,这些问题将在第4章中做详细介绍。单个工艺的自动化使半导体工业面临开发在各种机器间传输晶圆的方法的挑战。 这方面的问题成了自动化十年的重点,以达到无人化的目标。 当大多数工业向制造标准化发展的时候,半导体工业却正好相反。虽然大多数晶圆厂具有较好的控制和特性,但同时, 各种趋势促使制造商设计更加复杂的芯片,新设计又给制造商提出新的挑战而导致新工艺的开发。在这些精密复杂的水平上,就需要机器的自动化来完成工艺控制和重复性。 二十世纪八十年代开始时美国和欧洲占统治地位,日本半导体生产商的崛起,半导体工业成为世界范围的工业,随之而来的是―四小虎‖香港, 台湾, 新加坡和南韩半导体工业的发展。

产品的纪元(1991-2000)

从二十世纪七十到八十年代, 1微米特征图形尺寸的障碍显示了机遇和挑战,机遇是指这会是一个具有极高的速度和存储能力芯片的纪元。挑战是传统光刻由于增加的表面步骤、新增层和晶圆尺寸增大造成的局限。1微米的障碍是在实验室突破的,到1990年50%的生产线在生产微米级和低于微米级的产品。7 工业发展到了成熟后,更多传统上的重点被放在生产和市场问题上。早期的盈利策略是走发明的途径,也就是总要把最新和最先进的芯片抢先推向市场,以获得足够的可支付研发和设计费用的利润。这种策略带来的利润可以克服良品率和低效率的问题。 工艺控制上的技术(竞争)和改进的传播把更多工业的重点转移到了产品问题上。几个主要的产能因素是:自动化、成本控制、工艺特性化与控制及人员效率。 控制成本的策略包括:设备成本关系的详细分析;新厂的布局(如集束机器);自动化机械手;晶圆隔离技术(WIT);计算机集成制造(CIM);先进完善的统计工艺控制;先进的测量仪器;及时库存系统, 及其它(见15章)

技术推动的因素, 特征图形尺寸减小, 晶圆尺寸增大, 和良品率的提高都存在客观的和统计上的限制。但是产能的提高(包含许多因素)是持续获利的源泉。晶圆工厂的投资巨大(10-30亿美元),其设备和工艺开发同样耗资巨大。在研发0.35微米以下的技术时,X-RAY和深紫外光(DUV)光刻或传统的光刻的改进都是巨大的花费,同样, 在生产中也花费巨大。 这并不是说技术进步停止了,正相反,许多在十年中会用到的技术还是未知或处在非常原始的发展状态。技术的提高正在变成演化性的而不是革命性的。工程师正在学会如何在以技术飞跃来解决问题之前,从工艺过程中挖掘生产力。这是工业成熟的另外一个信号。

可能这十年的主要技术改变就是铜连线。铝连线在几个方面显现出局限性,特别是和硅的接触电阻。铜是一种较好的材料但它不易沉积和刻蚀,它如果接触到硅会对电路造成致命的影响。IBM8开发出了可实用的铜工艺,并在90年代末几乎立刻被业界接受。

11

芯片制造-半导体工艺教程

极小的纪元

微观技术在公众的感觉中意味着 ―小‖,在科学中是指十万分之一。因此,特征图形尺寸和栅极的宽度以微米来表示,如 0.018微米。纳米正在被广泛使用,上述的栅级宽度则为180纳米。9

在半导体协会1997年的国家技术发展路线图(National Technology Roadmap for semiconductors,NTRS)中,对半导体通向极小纪元的道路作了描绘。栅极的宽度到2012会达到50纳米,但这并不容易实现。随着器件尺寸变的更小会有一系列可预见的事情,优点是更快的运行速度和更高的密度。然而, 更小的尺寸要求更精密的工艺和设备。栅极区域是MOS晶体管非常关键的部分。 更小的栅极更易受污染的干扰,这将推动更洁净的化学品和工艺的发展。低度的污染要求更敏感的测量技术,表面的粗糙度也成为一个要控制的参数。随着器件之间的更加紧凑,需要更多层的金属连线层结构,而同时,要保持表面足够平以满足光刻的要求,这给平面技术带来了一定的压力。更多层的金属连线会带来更高的电阻。新金属材料,如铜也就成了需要。要取得这些进步就需要更洁净的制造厂,极为纯净的材料和化学品以及集束设备的使用,将对污染的暴露减至最小和并提高生产效率。

晶圆的直径将会达到450毫米以上,工厂的自动化水平也将遍及到机器之间,并且带有集成的工艺监测系统。更多高水平的工艺将会要求更高产量的晶圆制造厂,这些厂的成本到2005年将达到100亿。10来自巨大投资的压力迫使研发和建厂的速度更快。

到2012年, 半导体工业和集成电路会与现今大不相同,并将到达硅晶体管基本物理上的极限。随着许多对低端技术新用途需求的不断出现,硅工业还将会活跃,例如烤面包机和电冰箱不太可能使用最新的尖端产品。新材料会在实验室出现,混合物半导体,如镓/砷化物(GaAs)就是候选。技术如分子束(MBE)(12章)可能被用来一次一和原子的方式制作新材料。

可以毫无疑问地说随着材料和工艺的不断向前推进,半导体工业将继续是主导工业,也还可以毫无疑问地说IC的使用将继续以未知的方法改变我们的世界。

关键术语和概念

固体器件 集成电路

二极管 集成度/电路密度 电容 平化处理(工艺) 电阻 半导体制造的四个阶段 晶体管 芯片尺寸

分立器件 特征图形尺寸 晶圆 半导体材料 价格侵蚀 混合电路

复习问题

12

芯片制造-半导体工艺教程

1. 列出四种类型的分立器件。

2. 描述固体器件相对于真空器件的优点。

3. 一块VLSI较一块ULSI集成电路有更多的元件。(对或错) 4. 描述混合电路与集成电路的区别。 5. 叙述制造晶圆的工艺阶段。 6. 叙述制造芯片的的工艺阶段。 7. 描述N/P的结构。

8. 描述术语录―特征尺寸‖的含义。 9. 列出推动半导体工业的三个趋势。 10.描述半导体封装的功能

#1 第二章 半导体材料和工艺化学品-----1

第二章 半导体材料和工艺化学品-----1 by r53858 概述

半导体材料拥有特有的电性能和物理性能,这些性能使得半导体器件和电路具有独特的功能。这些性能会和原子的基本性能、固体、本征半导体和掺杂半导体的电性能一同分析。在本章的第二部分,我们会讨论适用于工艺化学品的基础化学。 目的

完成本章后您将能够:

1.分清原子的各个部分。

2.说出掺杂半导体的两种特性。 3.列出至少三种半导体材料。

4.列出与硅相比,砷化镓的优缺点。

5.解释N型和P型半导体材料在组成和电性能方面的不同。 6.描述电阻率和电阻的特性。 7.指明酸,碱和溶剂的不同。 8.列出自然界的四种状态。

9.给出原子、分子和离子的定义。

10.解释至少四种化学品的安全操作规则。

原子结构 玻尔原子

要想理解半导体材料就必须了解原子结构的基本知识。 原子是自然界的基本构造单元。自然界中的任何事物都是由96种稳定12种不稳定的元素组成。每一种元素都有不同的原子结构,不同的结构决定了元素的不同特性。

黄金的特性也是由黄金的原子结构决定的。如果一块黄金不断地被分割而变小,那么最终会留下一小块,依然能呈现出黄金的特性,这一小块就是原子。 进一步分下去,就会产生组成每个原子的三个部分。它们被称作亚原子粒子,也就是质子,中子和电子。这些亚原子粒子各有其特性。要组成金原子就要求这些亚原子粒子有特定的组合和结构。著名物理学家尼尔斯?玻尔最早把原子的基本结构用于解释不同元素的不同物理、化学和电性能(图2.1)。

13

芯片制造-半导体工艺教程

e-=电子 +=质子 N=中子

O=未填充电子位置

图2.1 玻尔原子模型

在玻尔的原子模型中,带正电的质子和不带电的中子集中在原子核中,带负电的电子围绕原子核在固定的轨道上运动,就象太阳的行星围绕太阳旋转一样。带正电的质子和带负电的电子之间存在着吸引力,不过吸引力和电子在轨道上运行的离心力相抵,这样一来原子结构就稳定了。

每个轨道容纳的电子数量是有限的。在有些原子中,不是所有的位置都会被电子填满,这样结构中就留下一个―空穴‖。当一个特定的电子轨道被填满后,其余的电子就必须填充到下一个外层轨道。

元素周期表

不同的元素,其原子中的电子、质子和中子数是不同的。幸运地是,自然界把这些亚原子粒子有序地组合起来。如果对决定原子结构的一些规则进行研究,就会对理解半导体材料和工艺化学品的特性有帮助。原子(也是元素)的范围包括从最简单的氢原子(有一个电子)到最复杂的铹(有103个电子)。 氢原子只包括一个原子核中的质子和一个电子。这种组合解释了原子结构的第一条规则。

1.在任何原子中都有数量相等的质子和电子。

2.任何元素都包括特定数目的质子,没有任何两种元素有相同数目的质子。氢在原子核中有一个质子,而氧原子有八个。

这条规则引出了人们对每种元素指定特定的序数的做法,―原子序数‖就等于原子中质子的数目(也就是电子的数目)。元素的基本参照就是元素周期表(图2.2)。周期表中每种元素都有一个方格,内有两个字母。原子序数就在方格的左上角。钙 (Ca)的原子序数为20,所以我们立即知道钙原子核中有20个质子,轨道系统上有20个电子。

中子是中性不带电粒子,和质子一起构成原子核。

图2.3表示出了一号元素氢,三号元素锂和十一号元素钠的原子结构图。当建立这些结构图的时候,就可以观察到电子在合适的轨道上分布的规则。该规则就是每个轨道(n)只能容纳2n2 个电子。按此算法,一号轨道只能容纳2个电子。该规则迫使锂的第三个电子进入第二个轨道。第二个轨道的电子数受该规则限制最多有8个,第三轨道的电子数最多有18个。因此在建立有11个质子和电子的钠原子的结构图时,开始的两个轨道容纳了10个电子,第十一个电子就留在第三个轨道上。

这三个原子有一个共性,每种原子的最外层都只有一个电子,这显示出了元素的另外一个可观察到的事实。

2.2 元素周期表 第一号元素:氢

14

芯片制造-半导体工艺教程

第三号元素:锂 第十一号元素:钠

图2.3 氢、锂和钠的原子结构

1.有相同最外层电子数的元素有着相似的性质,这个规则就反映在周期表中。注意氢、锂和钠都出现在标着罗马数字I 的竖列中,这个竖列数就代表最外层的电子数,每一列的元素都有着相似的性质。

2.最外层被填满或者拥有八个电子的元素是稳定的,这些原子在化学性质上要比最外层未填满的原子更稳定。

3. 原子会试图与其它原子结合而形成稳定的条件¾¾各轨道被填满或者最外层有八个电子。

如掺杂半导体这一节所阐述的,规则4和5影响着N型和P型半导体材料的形成。

#1 第二章 半导体材料和工艺化学品---2

第二章 半导体材料和工艺化学品---2 by r53858 电传导 导电子

很多材料的一个重要的特性就是导电或者支持电流。电流其实就是电子的流动。如果元素或者材料中的质子对外层的电子的束缚相对较弱,电传导就可以进行。在这样的材料中,这些电子可以很容易地流动和建立电流,这种情况存在于大多数金属中。

材料的导电性用一个叫做导电率的因素来衡量。导电率越高,材料的导电性越好。导电能力也用导电率的倒数,即电阻率来衡量。材料的电阻率越低,相应导电能力也越好。

C=1/ρ

3个导体分别为铜、银、金 图2.4 三个最好的电导体

其中C=导电率

ρ=单位为欧姆-厘米(Ω-cm)的电阻率

绝缘体和电容器 与导电性相对的是,有些材料中表现出核子对轨道电子的强大的束缚,直接的效果就是对电子移动有很大的阻碍,这些材料就是绝缘体。它们有很低的导电率和很高的电阻率。在电子电路和产品中,绝缘体如二氧化硅用作绝缘。

象做三明治那样把一层绝缘体夹在两个导体之间就形成了一种电子设备即电容。在半导体结构中,MOS栅结构,被绝缘层隔开的金属层和硅基体之间和其它结构中都存在电容(参看第16章)。电容的实际效用就是存储电荷。电容在存储器中用于信息存储,消除在导体和硅表面垒集的不利的电荷,并且形成场效应晶

15

芯片制造-半导体工艺教程

体管中的工作器件。薄膜的电容能力与其面积和厚度以及一个特性指数即绝缘常数。半导体金属传导系统需要很高的导电率,因而也就是需要低电阻和低电容材料。这些材料就是低绝缘常数的绝缘体,用于传导层间隔离的绝缘层需要高的电容或者高绝缘常数的绝缘体。

C = 电容

k =材料的绝缘常数

E0 = ====空间的介电常数(====空间有最高的电容) A = 电容的面积 t = 绝缘材料的厚度

电阻

与导电率程度(和电阻率)相关的电因子就是特定体积材料的电阻。电阻是材料电阻和尺寸的因子,如图2.5所示,电流的电阻由欧姆来衡量。

R=电阻 L=长度 W=宽度 D=高度

A=横截面积=WxD P=材料电阻率

图2.5 长方形棒的电阻

公式定义了特定材料特定体积的电阻(在图中,体积由三个维度X,Y,Z的矩形)。这种关系类似于密度和重量,密度为材料的特性,重量为特定体积的材料所受的力。

电流类似与水管中的水流。对于给定的水管直径和水压,只有一定量的水会流出水管,水流的阻力可以通过增加水管的直径,缩短水管和增加水压。在电子系统中,通过增大材料的横截面,缩短部件的长度,增大电压(类似于水压)和减小材料的电阻,可以增强电流。

本征半导体 半导体材料,顾名思义就是本身就有一些天然的导电能力的材料。有两种半导体元素——硅和锗,在元素周期表中位于第四列(如图2.6)。另外,还有好几十种化合物材料(化合物就是两个或更多元素化合的材料)也表现出半导体的特性.这些化合物源自第三列和第四列的元素,如砷化镓和磷化镓。其它化合物源自第二列和第六列的元素。

本征,该术语指的是材料处于纯净的状态而不是掺杂了杂质或其它物质。

Ge为元素半导体

3到5族化合物半导体 图2.6 半导体材料

掺杂半导体

16

芯片制造-半导体工艺教程

半导体材料在其本征状态是不能用于固态元件的。但是通过一种叫做掺杂的工艺,可以把特定的元素引入到本征半导体材料中。这些元素可以提高本征本导体的导电性。掺杂的材料表现出两种独特的特性,它们是固态器件的基础。这两种特性是:

1.通过掺杂精确控制电阻率 2.电子和空穴导电

掺杂半导体的电阻率

金属导电率的范围在每欧姆厘米104到106之间,该范围的含义可通过对如图2.5所示的电阻进行测试得到。如果固定体积的金属的电阻率确定,改变电阻的唯一方法是改变金属的形状。而在有半导体特性的材料中,电阻率可以改变,从而在电阻的设计中增加了又一个====度。半导体就是这样的材料,其电阻率的范围可以通过掺杂扩展到10-3到103之间。

半导体材料可以掺杂一些元素以达到一个有用的电阻率范围,材料或者多电子(N型)或者多空穴(P型)。

图2.7显示出掺杂程度与硅的电阻率之间的关系。X轴标为载流子是因为材料中的电子或空穴叫做载流子。注意有两条曲线:N型与P型。这是因为在材料中移动一个电子或空穴所需的能量是不同的。如曲线所示,在硅中要达到指定的电阻率N型所需掺杂的浓度要比P型小。另一种方法来表示这种现象就是移动一个电子比移动一个空穴的能量要小。

横轴为电阻率,纵轴为载流子浓度,其中P为硼掺杂,N为磷掺杂 图2.7 硅的电阻率与掺杂(载流子)的浓度。

只需0.000001%到0.1%的掺杂物就可以使半导体达到有用电阻率范围。半导体的特性允许在材料中创建出非常精确电阻率的区域。

电子和空穴传导

金属传导的另一个限制就是它只能通过电子的移动来导电。金属永远是N型的。通过掺杂特定的掺杂元素,半导体可以成为N型或者P型。N型和P型半导体可以用电子或者空穴来导电。在了解传导机理之前,了解在半导体结构中====(多余)的电子或空穴的形成是有益的。

为理解N型半导体,如图2.8所示将很少量的砷(As)掺入硅(Si)中。假定即使混合后每一个砷原子也被硅原子所包围。使用2.3.2节的规则,原子试图通过在外层有八个电子来达到稳定,砷原子表现为与其邻近的硅原子共享四个电子。但是,砷来自第五族外层有五个电子,直接的结果是其中的四个与硅中的电子配对,最后一个留下来。这一个可以用来电子传导。

考虑到硅晶体中每立方厘米中有百万个原子,从而也就有很多电子可以用来导电。在硅中,掺杂元素砷,磷和锑会形成N型硅。 对P型材料的理解的方法是相同的。不同之处在于使用来自元素周期表第三族的硼来形成P型硅。当混入硅中,它也与硅原子共享电子。不过,硼只有三个外层

17

芯片制造-半导体工艺教程

电子,所以在外层会有一个无电子填充的位置。这个未填充的位置就叫做空穴。

多出的电子

图2.8 用砷来做N型掺杂的硅 空穴

图2.9 用硼来做P型掺杂的硅

在掺杂的半导体材料中有很多的活动:电子和空穴不停地形成。电子会被吸引入未填充的空穴,从而留下一个未填充的位置,也就是另一个空穴。

如图2.10解释了空穴是怎样导电的。当电压加在一段导电或半导电材料上时,负电子就移向电压的正极,就象电池一样。

在P型材料(图2.11),电子会沿t1的方向跃入一个空穴而移向正极。当然当它离开它的位置时,它也留下一个新的空穴。当它继续向正极移动时,它会形成连续的空穴。这种效果对于用电流表来衡量这个过程的人来说就是该材料支持正电流,而实际上它是负电流移向相反的方向。这种现象叫做空穴流(hole flow),是半导体材料所独有的。

图2.10 N型半导体材料中的电子传导 电子方向;空穴方向

图2.11 P型半导体材料中的空穴传导

在半导体材料中形成P型导电的掺杂剂叫做受主(acceptors)。在半导体材料中形成N型导电的掺杂剂叫做授主(donors)。记住这些术语一个简单的方法就是在受主中有一个p而授主中有一个n。

在图2.12中总结了导体,绝缘体和半导体的电特性。在图2.13中总结了掺杂半导体的特性。

使用特定的掺杂元素在锗和化合物半导体中也可形成N型和P型半导体。 [转贴]第二章 半导体材料和工艺化学品---3 by r53858

载流子迁移率

在2.5.6节提到过,在半导体材料中移动一个电子比空穴要容易。在电路中,我们对载流子(空穴和电子)移动所需能量和其移动的速度都感兴趣。移动的速度叫做载流子迁移率,空穴比电子迁移率低。在为电路选择特定半导体材料时,这是个非常值得考虑的重要因素 。

分类 电子 例子 导电率

1.导体 ====移动 金、铜、银 2.绝缘体 无法移动 玻璃、塑料

3.半导体a.本征的 有些可以移动 锗、硅、3到5族元素 B.掺杂的 受控的部分可以移动 N型半导体P型半导体

18

芯片制造-半导体工艺教程

图2.12 材料的电分类 N型 P型

1.导电 电子 空穴 2.极性 负 正

3.掺杂术语 授主 受主

4.在硅中掺杂 砷、磷、锑 硼

图2.13 掺杂半导体的性质

半导体产品材料 锗和硅

锗和硅是两种重要的半导体,在最初固态器件时代,第一个晶体管是由锗制造的。但是锗在工艺和器件性能上有问题。它的937摄氏度熔点限制了高温工艺,更重要的是,它表面缺少自然发生的氧化物,从而容易漏电。 硅与二氧化硅平面工艺的发展解决了集成电路漏电问题,使得电路表面轮廓更平坦并且硅的1415摄氏度的熔点允许更高温的工艺。因此,世界上超过了90%的生产用晶圆的材料都是硅。

半导体化合物

有很多半导体化合物由元素周期表中第三族和第四族,第二族和第六族的元素形成。在这些化合物中,商业半导体器件中用得最多的是砷化镓(GaAs)和磷砷化镓(GaAsP),磷化铟(InP),砷铝化镓(GaAlAs)和磷镓化铟(InGaP)。1这些化合物有特定的性能。2当电流激活时,由砷化镓和磷砷化镓做成的二极管会发出可见的激光。这些材料用于电子面板中的发光二极管(LED‘s)。 砷化镓的一个重要特性就是其载流子的高迁移率。这种特性使得在通讯系统中砷化镓器件比硅器件更快地响应高频微波并有效地把他们转变为电流。 这种载流子的高迁移率也是对砷化镓晶体管和集成电路的兴趣所在。砷化镓器件会同类硅器件快上两到三倍,应用于超高速计算机和实时控制电路如飞机控制。 砷化镓本身就对辐射所造成的漏电具有抵抗性。辐射比如宇宙射线会在半导体材料中形成空穴和电子,它会升高不想要的电流,从而造成器件或电路工作不正常或停止工作。可以在辐射环境下工作的器件叫做辐射硬化。砷化镓是天然辐射硬化。

砷化镓也是半绝缘的。这种特性使邻近器件的漏电最小化,允许更高的封装密度,进而由于空穴和电子移动的距离更短,电路的速度更快了。在硅电路中,必须建立在表面建立特殊的绝缘结构来控制表面漏电。这些结构使用了不少空间并且减少了电路的密度。 尽管有这么多的优点,砷化镓也不会取代硅成为主流的半导体材料。其原因在于性能和制造难度之间的权衡。虽然砷化镓电路非常快,但是大多数的电子产品不需要那么快的速度。在性能方面,砷化镓如同锗一样没有天然的氧化物。为了补偿,必须在砷化镓上淀积多层绝缘体。这样就会导致更长的工艺时间和更低的产量。而且在砷化镓中半数的原子是砷,对人类是很危险的。不幸的是,在正常的工艺温度下砷会蒸发,这就额外需要抑制层或者加压的工艺反应室。这些步骤延长了工艺时间,增加了成本。在晶体生长阶段蒸发也会发生,导致晶体和晶圆不

19

芯片制造-半导体工艺教程

平整。这种不均匀性造成晶圆在工艺中容易折断,而且也导致了大直径的砷化镓生产比硅落后(参照第三章)。

尽管有这些问题,砷化镓仍是一种重要的半导体材料,其应用也将继续增多,而且在未来对计算机的性能可能有很大影响。

锗化硅

与砷化镓有竞争性的材料是锗化硅。这样的结合把晶体管的速度提高到可以应用于超高速的对讲机和个人通讯设施当中。3器件和集成电路的结构特色是用超高真空/化学气象沉积法(UHV/CVD)来淀积锗层。4双极晶体管就形成在锗层上,不同于硅技术中所形成的简单晶体管,锗化硅需要晶体管具有异质结构(hetrostructures)和异质结(heterojunctions)。这些结构有好几层和特定的掺杂等级从而允许高频的运行(参照第十六章)。

主要的半导体材料和二氧化硅之间的比较列在图2.14中。

铁电材料

在对更快和更可靠的存储器研究中,铁电体成为一种可行的方案。一个存储器单元必须用两种状态中的一种(开/关,高/低,0/1)存储信息,能够快速响应(读写)和可靠地改变状态。铁电材料电容如PbZr1-xTxO3(PZT)和

SrBi2Ta2O9(SBT)正好表现出这些特性。它们并入SiCMOS(参考第十六章)存储电路叫做铁电随机存储器(FeRAM)。5

Ge Si GaAs SiO2 原子质量

每立方厘米原子数或摩尔 晶体结构 单位晶格 密度 能隙

绝缘系数 熔点

击穿电压

热膨胀线性系数

图2.14 半导体材料的物理性能

工艺化学品 很明显,需要很多工艺来将原始半导体材料转变为有用的器件,大部份的工艺使用化学品。芯片制造首要是一种化学工艺,或者更准确地说是一系列化学工艺,高达20%工艺步骤是清洗和晶圆表面的准备。6

半导体工厂消耗大量的酸,碱,溶剂和水。为达到精确和洁净的工艺,部分成本是由于化学品需要非常高的纯度和特殊的反应机理。晶圆越大,洁净度要求越高,相应就需要更多的自动清洗位置,清洗所用化学品的成本也就跟着升高。当把芯片的制造成本加在一起,其中化学品占总制造成本可达40%。 对半导体工艺化学品洁净度的要求在第四章介绍。在工艺章节会详细介绍特定化

20

芯片制造-半导体工艺教程

学品和它们的特性。 分子,化合物和混合物

在2.3.1节,用玻尔原子模型解释物质的基本结构。这个模型可解释组成自然界所有物质的元素之间的结构差异,但是很显然自然界中超过了103(元素的数目)种物质。

非元素材料的基本单位是分子。水的基本单位是两个氢原子和一个氧原子组成的分子。材料的多样性源自原子之间相互结合形成分子。

每次我们想指定一个分子时就画一个如图2.15的图表是不方便的,更常用的方式是写出分子式。如水它就是熟悉的H2O。这个分子式确切地告诉我们在材料中的元素和其数目。化学家用更确切的术语―化合物‖来描述由元素的不同组合。这样H2O(水),NaCl(氯化钠或盐),H2O2(过氧化氢)和As2O3(三氧化砷)都是由一个一个分子集合成的不同化合物。 有的元素结合成双原子分子,双原子分子是分子中有两个相同元素的原子。熟悉的气体如氧气、氮气和氢气在自然状态下都是由双原子分子构成的。这样它们的公式就是O2,N2和H2。

物质还有其它两种形式:混合物和溶液。混合物由两种或更多种物质构成,但每种物质都保留各自的特性。典型的混合物就是盐和胡椒粉。

溶液是固体溶解于液体中的混合物,在液体中,固体分散分布,呈现出独特的性能。不过溶液中的物质并没有形成新的分子。盐水就是溶液的一个例子,可以把它分解回其初始状态:盐和水。

图2.15 水分子图 离子

术语―离子(ion)‖或―离子的(ionic)‖经常在半导体工艺中使用。该术语指的是材料中任何电荷不平衡的原子或分子。离子是通过在元素或分子的化学符号后加上一个正或负号的上标(Na+,Cl-)。举例来说,一个很严重的污染问题就是可移动的离子污染比如钠(Na+)。当钠进入半导体材料或器件中,由于钠带正电荷而引起问题。但在某些工艺如离子注入工艺中,形成离子如硼离子(B+)对完成工艺是很必要的。

第二章 半导体材料和工艺化学品---4 by r53858 物质的状态

固体,液体和气体

物质有四种状态:固体,液体,气体和等离子体(图2.16)。

**固体在常温常压下保持一定的形状和体积。

**液体有一定的体积但形状是变化的。一公升的水会与其容器形状一致。 **气体既无一定形状又无一定体积。它也会跟其容器形状一致,但跟液体不同之处是,它可扩展或压缩直至完全充满容器。

特定物质的状态与其压力和温度很有关系。温度是对材料中包含的所有能量的一种衡量。我们知道只需简单地改变其温度和(或)压力,水就可以在三种状态下存在(冰,液态水,蒸汽或水蒸气)。压力的影响更加复杂,超出了本文的

21

芯片制造-半导体工艺教程

讨论范围。

固体 液体 气体

等离子体

图2.16 物质的四种状态 等离子体

第四种状态就是等离子体。恒星就是一个典型的例子,它当然不符合固体,液体或气体的定义。等离子体是电离原子或分子的高能集合,在工艺气体上施加高能射频场可以诱发等离子体。它可用于半导体技术中促使气体混合物化学反应,它的一个优点就是它跟对流系统如烤箱里的对流加热相比,能量可以在较低的温度下传递。

物质的性质

所有物质都可用其化学组成和由化学组成而决定的性质来区分。在这一节,定义了好几个重要性质,都需要通过与半导体材料和工艺化学品打交道来理解的。 温度

不管是在氧化管中还是在等离子刻蚀反应室内,化学品的温度都对和其它化学品的反应发挥着重要影响,而且一些化学品的安全使用也需要了解和控制化学品的温度。有三种温度表示方法用于标识材料的温度,它们是华氏温标,摄氏温标和开氏温标(图2.17)。

水的沸点 水的冰点 绝对零度

图2.17 温度计量系统

华氏温标由德国物理学家Gabriel Fahrenheit用盐和水溶液开发的。他把溶液的冰点温度定为华氏零度,不幸地是纯水的冰点温度更有用,结果是在华氏温标中水的冰点温度为32度,沸腾温度为212度,两点之间相差180度。

摄氏或百分温标在科学研究中更为常用,将纯水冰点设为0度,沸点设为100度更有意义。注意这样在冰点和沸点之间正好是100度,这也意味着在摄氏温标中改变一度比华氏温标中需要更多的能量。

第三种温标是开氏温标。它和摄氏温标用一样的尺度,只不过是基于绝对零度。绝对零度就是所有原子停止运动的理论温度,该值为-273度。在开氏温标中,水在273度结冰,在373度沸腾。 密度,比重和蒸汽密度

物质的一个重要性质就是密度(dense)。当我们说某个东西是密集的,我们指的是单位体积的数量或重量。软木塞就比等积的铁密度低。密度以每立方厘米材料重量即克来衡量。水作为标准(在4摄氏度)每立方厘米重1克。其它的物质的密度用和相当体积的水的比值来表示。硅的密度为2.3,这样每立方厘米的硅就重2.3克。

比重(specific gravity)这个术语指的是4摄氏度时液体和气体的密度,它是物

22

芯片制造-半导体工艺教程

质的密度与水的比值。汽油的比重为0.75,意味着是水密度的75%。

蒸汽密度(vapor density)是指在一定温度和压力下气体的密度。空气每一立方厘米的密度为1,可以作为参考值。氢气的蒸汽密度为0.60,它是同体积的空气密度的60%。在同样大小的容器中,氢气的重量会是空气的60%。 压力和真空

物质另一个重要方面就是压力。压力作为一种性质通常用于液体和气体。压力定义为施加在容器表面上单位面积的力。 气缸中的气压迫使气体进入工艺反应室。所有的工艺机器都用量表表来测量和控制气压。

气压表示为英镑每平方英寸(psia),大气压或托。一个大气压就是在特定温度下包围地球的大气压力。这样高压氧化系统在5个大气压下工作,其压力是大气压的5倍。

空气的大气压为14.7psia,在气缸中气压要用psig或英镑每平方英寸的表。这意味着表的读数是绝对的,它并不包括外界的大气压。

真空(vacuum)也是在半导体工艺中要遇到的术语和情况,它实际上是低压的情况。一般来说,压力低于标准大气压就认为是真空。真空条件是用压力单位来衡量的。

低压倾向于用托来表示。这个单位是以意大利科学家托里切利,他在气体和其性质领域做出了很多重要发现。1托就是压力计中一毫米汞柱(manometer)所对应的压力。

如图2.18a所示的,想象当压力超过大气压时对压力计中水银柱的影响。当压力升高,在盘子里的水银受压而使水银柱升高。现在想象当气体从系统中抽走形成真空时会怎样(图2.18b)。只要有任何气体分子或原子在压力计中,施加在盘中的水银上的压力就会很小,从而水银柱就会升高一点点但很有限。水银柱变化是毫米级的,是与压力相关,或者在这种情况下是与真空有关。

蒸发,溅射和离子都工作在10-6到10-9托的真空(压力)。如果将其转换为只有一个简单压力计的真空系统,这就意味着水银柱才0.000000001(1x10-9)到0.000001(1x10-6)毫米高,非常小的长度。在实践中,水银压力计是不能测量这么低的压力的,而是使用其它更灵敏的压力表。

#1 第二章 半导体材料和工艺化学品---5 第二章 半导体材料和工艺化学品---5

by r53858

酸,碱和溶剂 酸和碱

半导体工艺需要大量化学液体来刻蚀、清洗和冲洗晶圆和其它部件。化学家们把这些化学品分为三大类:7

**酸 **碱 **溶剂

23

芯片制造-半导体工艺教程

酸和碱的不同之处在于液体中离子的不同。酸中含有氢离子(hydrogen ions),而碱含有氢氧离子(hydroxide ions)。对水分子的研究解释了不同之处。 水的化学式一般写成H2O,它也可写成HOH。将其分解,我们发现水是由带正电的氢离子(H+)和带负电的氢氧离子(OH-)。 当水与其它元素混合,要么是氢离子,要么就氢氧离子与其它物质结合(图2.19)。含有氢离子的液体叫做酸,含有氢氧离子的叫做碱。通常在家中就可找到酸和碱:柠檬汁和醋是酸,氨水和溶于水的苏打是碱。

酸、碱

图2.19 酸碱溶液

酸进一步可分为两类:有机的和无机的。有机酸含有碳氢化合物而无机酸没有。磺酸是有机酸,氢氟酸是无机酸。

酸和碱的强度和反应用pH值来衡量。该值从0到14,7为中性点。水既不是酸又不是碱,所以其pH值为7。强酸如硫酸(H2SO4)pH值较低为0到3,强碱如氢氧化钠(NaOH)pH值比7要高。

酸和碱都会与皮肤和其它化学品发生反应,必须按规定的安全规程来存储和操作。 溶剂

溶剂是不带电的,pH值为中性。水就是溶剂,实际上它溶解其它物质的能力最强。在晶圆工艺中也经常应用酒精和丙酮。

晶圆工艺中大多数溶剂是易挥发易燃的。要在通风良好的地方使用,要按照规定规程来存储和使用,这是非常重要的。 安全问题

在半导体工艺区域存在着化学品存储、使用和处理的危险,电的危险和其它危险。公司应通过培训和安全检查来提高员工的知识、技能和认识。

从左到右依次为:硫酸、柠檬汁、橙汁、干酪、奶、纯水、蛋清、硼砂、镁乳、冲影液、石灰、氢氧化钠

酸性增强、碱性增强(碱性、腐蚀性) 图2.20 pH测量系统

安全材料数据表

对于带入生产工厂的任何化学品,供应商必须提供一份材料安全数据表

(MSDS)。这是(美国:译者注)联邦职业、安全和健康法案(OSHA)的规定。这个表也叫做OSHA表20,该表包含着化学品相关的存储、健康、第一救援和使用信息。根据现行规定,在工厂MSDS表必须填写并且员工可以获取。

关键术语和概念 酸、碱、溶剂 空穴

玻尔原子模型 第三、五族化合物 载流子迁移率 离子

导电率/电阻率 安全材料数据表 导体 N型和P型

24

芯片制造-半导体工艺教程

绝缘体 元素周期表 掺杂剂 pH值表

掺杂半导体 压力和真空 电子、质子、中子 硅/锗 元素 固体、液体、气体 铁电材料 温度计 砷化镓

复习问题

1.描述导体、绝缘体和半导体之间的电性差异。 2.为什么固态器件需要掺杂半导体?

3.金属和本征半导体,哪一个电阻率更高?

4.给出两个理由解释为什么硅是最常用的半导体材料。 5.给出一种能够做N型硅的元素。

6.一个P型半导体表现出_______(负电或正电)流。 7.在下面的描述中选择酸、碱和溶液的分类方法。 a. 包含OH-离子 b. 包含H+离子 c. pH值呈中性

8.酸的pH值从_______到_______。 9.碱的pH值从_______到_______。 10.水的pH值是多少?

参考文献

4.1 Fujitsu Quantum Devices Limited, website.

4.2 R. E. Williams, Gallium Arsenide Processing Techniques, Artech House, Inc., Dedham, MA, 1984.

4.3 ―Industry News,‖ Semiconductor International, March 1994, p.22.

4.4 W. Conrad Holton, Silicon Germanium: Finally for Real, Solid State Electronics, November 1997, p. 119.

4.5 Robert E. Jones, ―Integration of Ferroelectrics into Nonvolitile Memories,‖ Solid State Technology, October 1997, p. 201.

4.6 R. Allen et al., ―MNST Wafer Cleaning,‖ Solid State Technology, January 1994, p. 61.

第三章 晶圆制备---1

by r53858 概述

在这一章里,讲述了沙子转变成晶体及晶圆和用于芯片制造级的抛光片的生产步骤。

目的

25

芯片制造-半导体工艺教程

完成本章后您将能够:

1,解释晶体和非晶体的区别。 2,解释多晶和单晶的区别。

3,画出两种在半导体工序重要的晶圆晶向示意图。 4,解释晶体生长直拉法,区溶法,液晶压缩直拉法。 5,画出晶圆制备工艺的流程示意图。

6,解释晶圆上参考面或缺口的使用和意义。 7,描述圆边晶圆在芯片制造工艺中的好处。

8,描述平整和无损伤晶圆在芯片制造工艺中的好处。

介绍

高密度和大尺寸芯片的发展需要大直径的晶圆。在上世纪60年代开始使用的是1²直径的晶圆,而现在业界根据90年代的工艺要求生产200毫米直径的晶圆。300 毫米直径的晶圆也已经投入生产线了,而根据SIA的技术路线图,到2007年,300毫米将成为标准尺寸。以后预期会是400毫米或450毫米直径的晶圆。大直径的晶圆是由不断降低芯片成本的要求驱动的。然而,这对晶圆制备的挑战是巨大的。大直径意味着高重量,这就需要更多坚固的工艺设备。在晶体生长中,晶体结构上和电学性能一致性及污染的问题是一个挑战,这些挑战和几乎每一个参数更紧的工艺规格要求共存。与挑战并进和提供更大直径晶圆是芯片制造不断进步的关键。

半导体硅制备

半导体器件和电路在半导体材料晶圆的表层形成,半导体材料通常是硅。这些晶圆的杂质含量水平必须非常低,必须掺杂到指定的电阻率水平,必须是指定的晶体结构,必须是光学的平面,并达到许多机械及清洁度的规格要求。制造IC级的硅晶圆分四个阶段进行:

晶圆制备阶段

**矿石到高纯气体的转变 **气体到多晶的转变

**多晶到单晶,掺杂晶棒的转变 **晶棒到晶圆的制备

半导体制造的第一个阶段是从泥土里选取和提纯半导体材料的原料。提纯从化学反应开始。对于硅,化学反应是从矿石到硅化物气体,例如四氯化硅或三氯硅烷。杂质,例如其他金属,留在矿石残渣里。硅化物再和氢反应(图3.1)生成半导体级的硅。这样的硅的纯度达99.9999999%,是地球上最纯的物质之一。1它有一种称为多晶或多晶硅(polysilicon)的晶体结构。

26

芯片制造-半导体工艺教程

晶体材料

材料中原子的组织结构是导致材料不同的一种方式。有些材料,例如硅和锗,原子在整个材料里重复排列成非常固定的结构,这种材料称为晶体(crystals)。 原子没有固定的周期性排列的材料称为非晶或无定形(amorphous)。塑料是无定形材料的例子。

晶胞

对于晶体材料实际上可能有两个级别的原子组织结构。第一个是单个原子的组织结构。晶体里的原子排列在称为晶胞(unit cell)的结构的特定点。晶胞是晶体结构的第一个级别。晶胞结构在晶体里到处重复。

另一个涉及晶胞结构的术语是晶格(lattice)。晶体材料具有特定的晶格结构,并且原子位于晶格结构的特定点。 在晶胞里原子的数量、相对位置及原子间的结合能会引发材料的许多特性。每个晶体材料具有独一无二的晶胞。硅晶胞具有16个原子排列成金刚石结构(图3.2)。砷化镓晶体具有18个原子的晶胞结构称为闪锌矿结构(图3.3)。

多晶和单晶

晶体结构的第二个级别和晶胞的构成有关。在本征半导体中,晶胞间不是规则的排列。这种情形和方糖杂乱无章的堆起来相似,每个方糖代表一个晶胞。这样排列的材料具有多晶结构。

当晶胞间整洁而有规则的排列时第二个级别的结构发生了(图3.4)。那样排列的材料具有单晶结构。

单晶材料比多晶材料具有更一致和更可预测的特性。单晶结构允许在半导体里一致和可预测的电子流动。在晶圆制造工艺的结尾,晶体的一致性对于分割晶圆成无粗糙边缘的晶元是至关重要的(见18章)。

晶体定向

对于一个晶圆,除了要有单晶结构之外,还需要有特定的晶向(crystal

27

芯片制造-半导体工艺教程

orientation)。通过切割如图3.4的单晶块可以想象这个概念。在垂直平面上切割将会暴露一组平面,而角对角切割将会暴露一个不同的平面。每个平面是独一无二的,不同在于原子数和原子间的结合能。每个平面具有不同的化学、电学和物理特性,这些特性将赋予晶圆。晶圆要求特定的晶体定向。

晶面通过一系列称为密勒指数的三个数字组合来表示。如图3.5有两个简单的立方晶胞嵌套在XYZ坐标中。两个在硅晶圆中最通常使用的晶向是<100>和<111>晶面。晶向描述成1-0-0面 和1-1-1面,括弧表示这三个数是密勒指数。 <100>晶向的晶圆用来制造MOS器件和电路,而<111>晶向的晶圆用来制造双极型器件和电路。砷化镓晶体只能沿<100>晶面切割。

注意在图3.6<100>晶面有一个正方形,而<111>晶面有一个三角形。当晶圆破碎时这些定向会如图3.6展现出来。<100>晶向的晶圆碎成四方形或正好90度角破裂。<111>晶向的晶圆碎成三角形。

晶体生长

半导体晶圆是从大块半导体材料切割而来的。那些半导体材料,或叫做晶棒,是从大块的具有多晶结构和未掺杂本征材料生长得来的。把多晶块转变成一个大单晶,给予正确的定向和适量的N型或P型掺杂,叫做晶体生长。

使用三种不同的方法来生长单晶:直拉法、液体掩盖直拉法、区溶法。

直拉法(CZ)

大部分的单晶是通过直拉法生长的(图3.7)。设备有一个石英坩埚,由负载高频波的环绕线圈来加热,或由电流加热器来加热。坩埚装载半导体材料多晶块和少量掺杂物。选择掺杂材料来产生N型或P型材料。开始在1415°C把多晶和搀杂物加热到液体状态,接下来籽晶安置到刚接触到液面(叫做熔融物)。籽晶是具有和所需晶体相同晶向的小晶体,籽晶可由化学气相的技术制造。在实际应用中,它们是一片片以前生长的单晶并重复使用。 当籽晶从熔融物中慢慢上升时,晶体生长开始了。籽晶和熔融物间的表面张力致

28

芯片制造-半导体工艺教程

使一层熔融物的薄膜附着到籽晶上然后冷却。在冷却过程中,在熔化的半导体材料的原子定向到籽晶一样的晶体结构。实际结果是籽晶的定向在生长的晶体中传播。在熔融物中的搀杂原子进入生长的晶体中,生成N型或P型晶体。

为了实现均匀掺杂、完美晶体和直径控制,籽晶和坩埚(伴随着拉速)在整个晶体生长过程中是以相反的方向旋转的。工艺控制需要一套复杂的反馈系统,综合转速、拉速及熔融物温度参数。

拉晶分三段,开始放肩形成一薄层头部,接着是等径生长,最后是收尾。直拉法能够生成几英尺长和直径大到十二英寸或更多的晶体。200毫米晶圆的晶体将会重达450磅,需要花费三天时间生长。

液体掩盖直拉法(LEC)

液体掩盖直拉法2用来生长砷化镓晶体。实质上它和标准的直拉法(CZ)一样,但为砷化镓做了重要改进。由于熔融物里砷的挥发性,改进是必须的。在晶体生长的温度条件下,镓和砷起反应,砷会挥发出来造成不均匀的晶体。 对这个问题有两个解决办法。一个是给单晶炉加压来抑制砷的挥发,另一个是液体掩盖直拉法工艺(图3.9)。液体掩盖直拉法使用一层氧化硼(B2O3)漂浮在熔融物上面来抑制砷的挥发。在这个方法中,单晶炉里需要大约一个大气压。

区熔法

区熔法晶体生长2是在本文中介绍的技术历史上早期发展起来的几种工艺之一,仍然在特殊需要中使用。直拉法的一个缺点是坩埚中的氧进入到晶体中,对于有些器件,高水平的氧是不能接受的。对于这些特殊情况,晶体必须用区熔法技术来生长以获得低氧含量晶体。

区熔法晶体生长(图3.10)需要一根多晶棒和浇铸在模子里的掺杂物。籽晶熔合到棒的一端。夹持器装在单晶炉里。当高频线圈加热多晶棒和籽晶的界面时,多晶到单晶的转变开始了。线圈沿着多晶棒的轴移动,一点点把多晶棒加热到液相点。在每一个熔化的区域,原子排列成末端籽晶的方向。这样整个棒以开始籽晶的定向转变成一个单晶。

区熔法晶体生长不能够象直拉法那样生长大直径的单晶,并且晶体有较高的位错密度,但不需用石英坩埚会生长出低氧含量的高纯晶体。低氧晶体可以使用在高功率的晶闸管和整流器。这两种方法比较如图3.11。

29

芯片制造-半导体工艺教程

第三章 晶圆制备--2 by r53858

晶体和晶圆质量

半导体器件需要高度的晶体完美。但是即使使用了最成熟的技术,完美的晶体还是得不到的。不完美,叫做晶体缺陷,会产生不平均的二氧化硅膜生长、差的外延膜的淀积、晶圆里不均匀的掺杂层及其它问题而导致工艺问题。在完成的器件中,晶体缺陷会引起有害的电流漏出,可能阻止器件在正常电压下工作。有三类重要的晶体缺陷: 1. 点缺陷 2. 位错 3. 原生缺陷

点缺陷

点缺陷的来源有两类。一类来源是由晶体里杂质原子挤压晶体结构引起应力所致;第二类来源称为空位,在这种情况下,有某个原子在晶体结构的位置上缺失了。

空位是一种发生在每一个晶体里的自然现象。不幸的是空位无论在晶体或晶圆加热和冷却都会发生,例如在制造工艺过程中。减少空位是低温工艺背后的一个推动力。

位错

位错是在单晶里一组晶胞排错位置。这可以想象成在一堆整齐排列的方糖中有一个排列和其它的发生了微小的偏差。

位错在晶圆里的发生由于晶体生长条件和晶体里晶格应力,也会由于制造过程中的物理损坏。碎片或崩边成为晶格应力点会,产生一条位错线,随着后面的高温工艺扩展到晶圆内部。位错能通过表面一种特殊的腐蚀显示出来。典型的晶圆具有每平方厘米200到1000的位错密度。

腐蚀出的位错出现在晶圆的表面上,形状代表了它们的晶向。<111>的晶圆腐蚀出三角形的位错,<100>的晶圆出现方形的腐蚀坑(图3.6)。

原生缺陷

在晶体生长中,一定的条件会导致结构缺陷。有一种叫滑移,参考图3.13沿着晶体平面的晶体滑移。另一个问题是孪晶,这是一个从同一界面生长出两种不同方向晶体的情形。这两种缺陷都是晶体报废的原因。

30

芯片制造-半导体工艺教程

晶体准备

截断

晶体从单晶炉里出来以后,到最终的晶圆会经历一系列的步骤。第一部是用锯子截掉头尾。

直径滚磨

在晶体生长过程中,整个晶体长度中直径有偏差(图3.14)。晶圆制造过程有各种各样的晶圆固定器和自动设备,需要严格的直径控制以减少晶圆翘曲和破碎。 直径滚磨是在一个无中心的滚磨机上进行的机械操作。机器滚磨晶体到合适的直径,无需用一个固定的中心点夹持晶体在车床型的滚磨机上。

晶体定向,电导率和电阻率检查

在晶体提交到下一步晶体准备前,必须要确定晶体是否达到定向和电阻率的规格要求。

晶体定向(图3.15)是由X射线衍射或平行光衍射来确定的。在两种方法中,晶体的一端都要被腐蚀或抛光以去除损伤层。下一步晶体被安放在衍射仪上,X射线或平行光反射晶体表面到成像板(X射线)或成像屏(平行光)。在成像板或成像屏上的图案显示晶体的晶面(晶向)。在图3.15显示的图案代表<100>晶向。

许多晶体生长时有意偏离重要的<100>和<100>晶面一点角度。这些偏晶向在晶圆制造过程中会带来很多好处,特别是在离子注入工艺中,原因会在工艺应用章中涉及到。

晶棒粘放在一个切割块上来保证晶圆从晶体正确的晶向切割。

由于晶体是经过掺杂的,一个重要的电学性能检查是导电类型(N或P)来保证使用了正确的掺杂物。热点探测仪连接到极性仪用来在晶体中产生空穴或电子(和类型相关),在极性仪上显示导电类型。

进入晶体的掺杂物的数量由电阻率测量来确定,使用四探针仪。见13章此测量技术的描述。在第2章(图2.7)讲到的曲线表示了电阻率和N型P型硅掺杂含量的关系。

由于在晶体生长工艺中掺杂量的变异,电阻率要延着晶体的轴向测量。这种变异导致晶圆进入几个电阻率规格范围。在后面的工序,晶圆将根据电阻率范围分组来达到客户的规格要求。

31

芯片制造-半导体工艺教程

滚磨定向指示

一旦晶体在切割块上定好晶向,就沿着轴滚磨出一个参考面(图3.16)。这个参考面将会在每个晶圆上出现,叫做主参考面。参考面的位置延着一个重要的晶面,这是通过晶体定向检查来确定的。 在制造工艺中,参考面对晶向起可见的参考作用。它用来放置第一步的光刻图案掩膜版,所以芯片的晶向总是沿着一个重要的晶面。 在许多晶体中,在边缘有第二个较小的参考面。第二个参考面对于主参考面的位置是一种代码,它不仅用来区别晶圆晶向而且区别导电类型。这种代码在图3.17中显示。

对于大直径的晶圆,在晶体上滚磨出一个缺口来指示晶向。

切片

用有金刚石涂层的内圆刀片把晶圆从晶体上切下来(图3.18)。这些刀片是中心有圆孔的薄圆钢片。圆孔的内缘是切割边缘,用金刚石涂层。内圆刀片有硬度,但不用非常厚。这些因素减少刀口(切割宽度)尺寸,也就减少一定数量的晶体被切割工艺所浪费。

对于300毫米直径的晶圆,使用线切割来保证小锥度的平整表面和最少量的刀口损失。

第三章 晶圆制备--3 by r53858

晶圆刻号

大面积的晶圆代在晶圆制造工艺中有高价值,区别它们是防止误操作所必需的,并且可以保持精确的可追溯性。使用条形码和数字矩阵码(图3.19)的激光刻号被采用了。3对300毫米的晶圆,激光点是一致认同的方法。

32

芯片制造-半导体工艺教程

磨片

半导体晶圆的表面要规则,且没有切割损伤,并要完全平整。第一个要求来自于很小尺度的制造器件的表面和次表面层。它们的尺度在0.5到2微米之间。为了获得半导体器件相对尺寸的概念,想象图3.20的剖面和房子一样高,大概8英尺,在那个范围内,在晶圆的工作层都存在顶部一到二英寸或更小的区域。 平整度是小尺寸图案是绝对的必要条件(见11章)。先进的光刻工艺把所需的图案投影到晶圆表面,如果表面不平,投影将会扭曲就象电影图像在不平的银幕上没法聚焦一样。

平整和抛光的工艺分两步:磨片和化学机械抛光(图3.21)。磨片是一个传统的磨料研磨工艺,精调到半导体使用要求。磨片的主要目的是去除切片工艺残留的表面损伤。

化学机械抛光(CMP)

最终的抛光步骤是一个化学腐蚀和机械磨擦的结合。晶圆装在旋转的抛光头上,下降到抛光垫的表面以相反的方向旋转。抛光垫材料通常是有填充物的聚亚安酯铸件切片或聚氨酯涂层的无纺布。二氧化硅抛光液悬浮在适度的含氢氧化钾或氨水的腐蚀液中,滴到抛光垫上。

碱性抛光液在晶圆表面生成一薄层二氧化硅。抛光垫机以持续的机械磨擦作用去除氧化物,晶圆表面的高点被去除掉,直到获得特别平整的表面。如果一个半导体晶圆的表面扩大到10000英尺(飞机场跑道的长度),在总长度中将会有正负2英寸的平整度偏差。

获得极好平整度需要规格和控制抛光时间、晶圆和抛光垫上的压力、旋转速度、抛光液颗粒尺寸、抛光液流速、抛光液的PH值、抛光垫材料和条件。

化学机械抛光是业界发展起来的制造大直径晶圆的技术之一。在晶圆制造工艺中,新层的建立会产生不平的表面,使用CMP以平整晶体表面。在这个应用中,CMP被翻译成化学机械平面化(Planarization)。具体CMP使用的解释在12章。

背处理

在许多情况下,只是晶圆的正面经过充分的化学机械抛光。背面留下从粗糙或腐蚀到光亮的外观。对于某些器件的使用,背面可能会受到特殊的处理导致晶体缺陷,叫做背损伤。背损伤产生位错的生长辐射进入晶圆,这些位错起象是陷阱,俘获在制造工艺中引入的可移动金属离子污染。这个俘获现象又叫做吸杂(图3.22)。背面喷沙是一种标准的技术,其它的方法包括背面多晶层或氮化硅的淀积。

33

芯片制造-半导体工艺教程

双面抛光

对大直径晶圆许多要求之一是平整和平行的表面。许多300毫米晶圆的制造采用了双面抛光,以获得局部平整度在25´25毫米测量面时小于0.25微米到0.18微米的规格要求。4缺点是在后面的工序中必须使用不划伤和不污染背面的操作技术。

边缘倒角和抛光

边缘倒角是使晶圆边缘圆滑的机械工艺(图3.23)。应用化学抛光进一步加工边缘,尽可能的减少制造中的边缘崩边和损伤,边缘崩边和损伤能导致碎片或是成为位错线的核心。

晶圆评估

在包装以前,需要根据用户指定的一些参数对晶圆(或样品)进行检查。图3.24列举了一个典型的规格要求。 主要的考虑是表面问题如颗粒,污染和雾。这些问题能够用强光或自动检查设备来检测出。

氧化

晶圆在发货到客户之前可以进行氧化。氧化层用以保护晶圆表面,防止在运输过程中的划伤和污染。许多公司从氧化开始晶圆制造工艺,购买有氧化层的晶圆就节省了一个生产步骤。氧化工艺在第7章解释。

包装

虽然花费了许多努力生产高质量和洁净的晶圆,但从包装方法本身来说,在运输

34

芯片制造-半导体工艺教程

到客户的过程中,这些品质会丧失或变差。所以,对洁净的和保护性的包装有非常严格的要求。包装材料是无静电、不产生颗粒的材料,并且设备和操作工要接地,放掉吸引小颗粒的静电。晶圆包装要在洁净室里进行。

晶圆外延

尽管起始晶圆的质量很高,但对于形成互补金属氧化物半导体(CMOS)器件而言还是不够的,这些器件需要一层外延层。许多大晶圆供应商有能力在供货前对晶圆外延。此器件技术在16章中讨论。

关键术语和概念

晶体 籽晶 晶胞 熔融物 多晶 晶体生长 单晶 直拉法

晶体定向 区熔法

<100>晶面 液体掩盖直拉法 <111>晶面 晶圆参考面 点缺陷 晶圆参考面代码 晶体位错 化学机械抛光 原生缺陷 背损伤 边缘倒角 切片 滑移 空位

复习问题

1. 在多晶结构里原子不是有序排列的(对/错)。 1. 在单晶结构里晶胞不是有序排列的(对/错)。 2. 画一个晶胞立方并指出<100>晶面。

3. <111>晶向的晶圆是用来做------(双极型,MOS)器件。 4. 如果籽晶是<100>晶向,拉出的晶体是什么晶向?

5. 画一个直拉晶体生长的示意图并指出所有重要的部分。

6. 在晶体生长过程中,熔融物材料从单晶结构改变到多晶结构(对/错)。7. 为什么晶圆的边缘是圆的? 8. 画一个晶圆准备的流程图。

9. 给出两个原因,为什么半导体晶圆需要平整的表面?

参考文献

3.1 Sumitomo Sitix Product Brochure.

35

芯片制造-半导体工艺教程

3.2 R. E. Williams, Gallium Arsenide Processing Techniques, Artech House Inc., Dedham MA, 1984, p. 37.

3.3 S. J. Brunkhorst, and D. W. Sloat, ―The impact of the 300-mm transition on silicon wafer suppliers,‖ Solid state Technology, January 1998, p.87. 3.4 Ibid.

第四章 芯片制造概述--1 by r53858

概述

本章将介绍基本芯片生产工艺的概况。本章通过在器件表面产生电路元件的工艺顺序来阐述四种最基本的平面制造工艺。接下来解释了从功能设计图到光刻掩膜板的生产的电路设计过程。最后, 详细描述了晶圆和器件的特性和术语。

目的

完成本章后您将能够:

1. 鉴别和解释最基本的四种晶圆生产工艺。 2. 辨别晶圆的各个部分。

3. 描绘集成电路设计的流程图。

4. 说出集成电路合成布局图和掩膜组的定义与用途。 5. 画出作为基础工艺之一的掺杂工艺顺序截面图。

6. 画出作为基础工艺之一的金属化工艺顺序的截面图。 7. 画出作为基础工艺之一的钝化层工艺顺序的截面图。 8. 识别集成电路电路器件的各个部分。

晶圆生产的目标

芯片的制造,分为四个阶段:原料制作、单晶生长和晶圆的制造、集成电路晶圆的生产、集成电路的封装。前两个阶段已经在本书的第三章涉及。本章讲述的是第三个阶段,集成电路晶圆生产的基础知识。

集成电路晶圆生产(wafer fabrication)是在晶圆表面上和表面内制造出半导体器件的一系列生产过程。整个制造过程从硅单晶抛光片开始,到晶圆上包含了数以百计的集成电路芯片(图4.1)。

晶圆术语

图4.2列举了一片成品晶圆。接下来将向读者讲解晶圆表面各部分的名称:

36

芯片制造-半导体工艺教程

图4.2 晶圆术语

1. 器件或叫芯片(Chip, die, device, microchip, bar): 这个名词指的是在晶圆表面占大部分面积的微芯片掩膜。

2. 街区或锯切线(Scribe lines, saw lines, streets, avenues):在晶圆上用来分隔不同芯片之间的街区。街区通常是空白的, 但有些公司在街区内放置对准靶, 或测试的结构(见 ? Photomasking‘ 一章)。

3. 工程试验芯片(Engineering die, test die):这些芯片与正式器件(或称电路芯片)不同。它包括特殊的器件和电路模块用于对晶圆生产工艺的电性测试。 4. 边缘芯片( Edge die):在晶圆的边缘上的一些掩膜残缺不全的芯片而产生面积损耗。由于单个芯片尺寸增大而造成的更多边缘浪费会由采用更大直径晶圆所弥补。推动半导体工业向更大直径晶圆发展的动力之一就是为了减少边缘芯片所占的面积。

5. 晶园的晶面( Wafer Crystal Plans):图中的剖面标示了器件下面的晶格构造。此图中显示的器件边缘与晶格构造的方向是确定的。

6. 晶圆切面/凹槽( Wafer flats/notches):例如图示的晶圆有主切面和副切面,表示这是一个P型<100>晶向的晶圆(见第三章的切面代码)。300 毫米晶圆都是用凹槽作为晶格导向的标识。

晶圆生产的基础工艺

集成电路芯片有成千上百的种类和功用。然而,它们都是由为数不多的基本结构(主要为双极结构和金属氧化物半导体结构,见第十六章)和生产工艺制造出来的。类似于汽车工业,这个工业生产的产品范围很广,从轿车到推土机。然而,金属成型、焊接、油漆等工艺是对有的汽车厂都是通用的。在汽车厂内部,这些基本的工艺以不同的方式被应用,来制造出客户希望的产品。 同样,芯片制造也是一样。制造企业使用四种最基本的工艺方法通过大量的工艺顺序和工艺变化制造出特定的芯片。这些基本的工艺方法是增层、光刻、掺杂、热处理(图4.3)。

增层

增层是在晶圆表面形成薄膜的加工工艺。分析图4.4的简单MOS晶体管可看出在晶圆表面生成了许多的薄膜。这些薄膜可以是绝缘体、半导体或导体。它们是由不同的材料组成,使用多种工艺生长或淀积的。

37

芯片制造-半导体工艺教程

这些主要的工艺技术是生长二氧化硅膜和淀积不同种材料的薄膜。通用的淀积技术是化学汽相淀积(CVD) 、蒸发和溅射。图4.6列出了常见的薄膜材料和增层工艺。其中每项的具体情况在本书的工艺章节各有阐述。各种薄膜在器件结构内的功用在第16章进行解释。

层别(Layers) 热氧化工艺(Thermal Oxidation) 化学汽相淀积工艺(Chemical Vapor Deposition) 蒸发工艺 (Evaporation) 溅射工艺(Sputtering)

绝缘层 (Insulators) 二氧化硅(Silicon Deioxide) 二氧化硅(Silicon Dioxide) 氮化硅(Silicon Nitrides) 二氧化硅 (Silicon Dioxide) 一氧化硅(Silicon Monoxide)

半导体层 (semiconductors) 外延单晶硅 (Epitaxial Silicon) 多晶硅 (Poly Silicon) 导体层 (conductors) 铝 (Aluminum) 铝/硅合金(Aluminum/Silicon) 铝铜合金 (Aluminum/Copper) 镍铬铁合金 (Nichrome) 黄金 (Gold) 钨 (Tungsten) 钛 (Titanium) 钼 (molybdenum) 铝/硅合金(Aluminum/Silicon) 铝铜合金 (Aluminum/Copper)

图 4.6 薄层分类/工艺与材料的对照表

38

芯片制造-半导体工艺教程

光刻

光刻是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺(图4.7)。在此之后,晶圆表面会留下带有微图形结构的薄膜。被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。

光刻工艺也被称为大家熟知的Photomasking, masking, photolithography, 或

microlithography。在晶圆的制造过程中,晶体三极管、二极管、电容、电阻和金属层的各种物理部件在晶圆表面或表层内构成。这些部件是每次在一个掩膜层上生成的,并且结合生成薄膜及去除特定部分,通过光刻工艺过程,最终在晶圆上保留特征图形的部分。光刻生产的目标是根据电路设计的要求,生成尺寸精确的特征图形,并且在晶圆表面的位置正确且与其它部件(parts)的关联正确。 光刻是所有四个基本工艺中最关键的。光刻确定了器件的关键尺寸。光刻过程中的错误可造成图形歪曲或套准不好,最终可转化为对器件的电特性产生影响。图形的错位也会导致类似的不良结果。光刻工艺中的另一个问题是缺陷。光刻是高科技版本的照相术,只不过是在难以置信的微小尺寸下完成。在制程中的污染物会造成缺陷。事实上由于光刻在晶圆生产过程中要完成5层至20层或更多,所以污染问题将会放大。

第四章 芯片制造概述--2 by r53858

掺杂

掺杂是将特定量的杂质通过薄膜开口引入晶圆表层的工艺制程(图4.8)。它有两种工艺方法:热扩散(thermal diffusion)和离子注入(implantation),都在第十一章有详细阐述。

热扩散是在1000摄氏度左右的高温下发生的化学反应,晶圆暴露在一定掺杂元素汽态下。扩散的简单例子就如同除臭剂从压力容器内释放到房间内。汽态下的掺杂原子通过扩散化学反应迁移到暴露的晶圆表面,形成一层薄膜。在芯片应用中,热扩散也被称为固态扩散,因为晶圆材料是固态的。热扩散是一个化学反应过程。

离子注入是一个物理反应过程。晶圆被放在离子注入机的一端,掺杂离子源(通常为气态)在另一端。在离子源一端,掺杂体原子被离化(带有一定的电荷),被电场加到超高速,穿过晶圆表层。原子的动量将掺杂原子注入晶圆表层,好象

39

芯片制造-半导体工艺教程

一粒子弹从枪内射入墙中。

掺杂工艺的目的是在晶圆表层内建立兜形区, 或是富含中子(N型)或是富含空穴(P型)。这些兜形区形成电性活跃区和PN结,在电路中的晶体管、二极管、电容器、电阻器都依靠它来工作。

热处理

热处理是简单地将晶圆加热和冷却来达到特定结果的制程。在热处理的过程中,在晶圆上没有增加或减去任何物质,另外会有一些污染物和水汽从晶圆上蒸发。 在离子注入制程后会有一步重要的热处理。掺杂原子的注入所造成的晶圆损伤会被热处理修复,称为退火,温度在1000摄氏度。另外,金属导线在晶圆上制成后会有一步热处理。这些导线在电路的各个器件之间承载电流。为了确保良好的导电性,金属会在450摄氏度热处理后与晶圆表面紧密熔合。热处理的第三种用途是通过加热在晶圆表面的光刻胶将溶剂蒸发掉,从而得到精确的图形。

制造半导体器件和电路

当今的芯片结构含有多层薄膜和掺杂,很多层的薄膜生长或淀积在晶圆表面,包括多层的导体配合以绝缘体(图4.10四层截面)。完成如此复杂的结构需要很多生产工艺。并且每种工艺按照特定顺序进行包含一些工步和和子工步。64G CMOS 器件的特殊制程需要180个重要工艺步骤,52次清洗,和多达28层膜版。1尽管如此,所有这些工艺步骤都是四大基础工艺之一。图4.11列出了基础工艺和每一个工艺方案的原理。在图中的是一个简单器件-MOS栅极硅晶体管的构成,插图说明了制造的顺序。这类晶体管各部分的功能和晶体管的工作原理在第十四章有详细阐述。

40

芯片制造-半导体工艺教程

复习问题

1. 说出一种增层的工艺。

2. 离子注入属于那一种基本的工艺方法? 3. 列出最基本的四种工艺方法。

4. 将氧化/光刻/扩散的加工流程画成截面图解释。 5. 描述一下电路设计的复合图。 6. 那一种基本工艺方法用到掩膜版?

7. 在电性测试是检测以下哪一参数?(晶圆厚度,缺陷密度,电路功能) 8. 在电路设计过程的哪一步运用CAD系统? 9. 为什么要将芯片封装?

10. 晶圆制造实例所讲的接触孔是什么作用?

参考文献

4.1 R.Kopp, Kopp Semiconductor Engineering, September 1996

4.2 R. Iscoff, ―VLSI Testing: The Stakes Get Higher‖, Semiconductor International, September 1993, P.58

第五章 污染控制--1 by r53858 概述

在这一章中, 我们将解释污染对器件工艺生产,器件性能和器件的可靠性的影响, 以及芯片生产区域存在的污染类型和主要的污染源。同时,也将对洁净室规划,主要的污染控制方法和晶片表面的清洗工艺进行讨论。

目的

完成本章后您将能够:

1. 识别污染在半导体器件及其工艺生产中的三大主要影响。 2. 列出芯片工艺生产中的主要污染源。 3. 定义洁净室的洁净等级。

4. 列举等级分别为100,10 和1的芯片生产区域的微尘密度。

5. 描述正压环境,风淋室以及粘着地板垫(译者注:FAB入口处用以粘除脚底的灰尘)在保持环境洁净度中所起的作用。

6. 列出至少三种在芯片厂中尽量减少人员污染的技术方法。 7. 识别在通常所说的水中存在的三种污染物以及在半导体生产厂中对它们的控制。

8. 描述通常所说的工业化学品和半导体级纯度的化学品之间的区别。

46

芯片制造-半导体工艺教程

9. 说出两个由高静电等级引起的问题以及两种控制静电的方法。 10. 描述典型的前线和后线的晶片清洗工艺。 11. 列举典型的晶片冲洗技术。

介绍

污染是可能将新兴的芯片生产工业扼杀于摇篮中的首要问题之一。半导体工业起步于由航空工业发展而来的洁净室技术。然而,事实证明,对于大规模集成电路的生产,这些技术水平是远远不够的。除此之外,能够提供洁净室专用化学品和材料的供应商以及具备建造洁净室知识的承包商更是无处可寻。在那些年里,该工业是以家庭型规模的方式发展的。 如今,大规模的复杂的洁净室辅助工业已经形成,洁净室技术也与芯片的设计及线宽技术同步发展。通过不断地解决在各个芯片技术时代所存在的污染问题,这一工业自身也得到了发展。以前的一些小问题,有可能成为当今芯片生产中足以致命的缺陷。

问题

半导体器件极易受到多种污染物的损害。这些污染物可归纳为以下四类。分别是:

1. 微粒 2. 金属离子 3. 化学物质 4. 细菌

微粒。半导体器件,尤其是高密度的集成电路,易受到各种污染的损害。器件对于污染的敏感度取决于较小的特征图形的尺寸和晶片表面沉积层的薄度。目前的量度尺寸已经降到亚微米级。一微米(µm)是非常小的。一厘米等于10,000微米。人的头发的直径为100微米(图5.1)。这种非常小的器件尺寸导致器件极易受到由人员,设备和工艺操作用使用的化学品所产生的存在于空气中的颗粒污染的损害。由于特征图形尺寸越来越小,膜层越来越薄,所允许存在的微粒尺寸也必须被控制在更小的尺度上。

图 5.1 一微米的相对大小 图 5.2 污染物的相对尺寸

图 5.3 空气中的微粒与晶片尺度的相对大小

由经验所得出的法则是微粒的大小要小于器件上最小的特征图形尺寸的1/10倍1。直径为0.03微米的微粒将会损害0.3微米线宽大小的特征图形。落于器件的关键部位并毁坏了器件功能的微粒被称为致命缺陷。致命缺陷还包括晶体缺陷和其它由于工艺过程引入带来的问题。在任何晶片上,都存在大量的微粒。有些属于致命性的,而其它一些位于器件不太敏感的区域则不会造成器件缺陷。1994年, SIA将0.18微米设计的光刻操作中的缺陷密度定为0.06微米135个,每平

47

芯片制造-半导体工艺教程

方厘米每层。

金属离子。在第二章中,介绍了半导体器件在整个晶片上N型和P型的掺杂区域以及在精确的N/P 相邻区域,都需要具有可控的电阻率。通过在晶体和晶片上有目的地掺杂特定的掺杂离子来实现对这三个性质的控制。非常少量的掺杂物即可实现我们希望的效果。但遗憾的是,在晶片中出现的极少量的具有电性的污染物也会改变器件的典型特征,改变它的工作表现和可靠性参数。

可以引起上述问题的污染物称为可移动离子污染物 (MICs)。它们是在材料中以离子形态存在的金属离子。而且,这些金属离子在半导体材料中具有很强的可移动性。也就是说,即便在器件通过了电性能测试并且运送出去,金属离子仍可在器件中移动从而造成器件失效。遗憾的是,能够在硅器件中引起这些问题的金属存在于绝大部分的化学物质中。所以,在晶片中,MIC污染物必须被控制在1010原子/cm²的范围内甚至更少。2

每10亿个单位中的金属含量 (ppb) 杂质钠 50钾 50铁 50铜 60镍 60铝 60镁 60铅 60锌 60 氯 1000

图 5.4 光刻胶去除剂的金属含量(EKC Technology – 830 光刻胶去除剂)

钠是在未经处理的化学品中最常见的可移动离子污染物,同时也是硅中移动性最强的物质。因此,对钠的控制成为硅片生产的首要目标。MIC的问题在MOS器件中表现最为严重,这一事实促使一些化学品生产商研制开发MOS级或低钠级的化学品。这些标识都意味着较低的可移动污染物的等级。

化学品。 在半导体工艺领域第三大主要的污染物是不需要的化学物质。工艺过程中所用的化学品和水可能会受到对芯片工艺产生影响的痕量物质的污染。它们将导致晶片表面受到不需要的刻蚀,在器件上生成无法除去的化合物,或者引起不均匀的工艺过程。氯就是这样一种污染物,它在工艺过程中用到的化学品中的含量受到严格的控制。

细菌。 细菌是第四类的主要污染物。细菌是在水的系统中或不定期清洗的表面生成的有机物。细菌一旦在器件上形成,会成为颗粒状污染物或给器件表面引入不希望见到的金属离子。

污染引起的问题

这四种污染物在以下三个特定的功能领域对工艺过程和器件产生影响。它们是:

1. 器件工艺良品率 2. 器件性能 3. 器件可靠性

器件工艺良品率

48

芯片制造-半导体工艺教程

在一个污染环境中制成的器件会引起多种问题。污染会改变器件的尺寸,改变表面的洁净度,并且/或者造成有凹痕的表面。在晶片生产的过程中,有一系列的质量检验和检测,他们是为检测出被污染的晶片而特殊设计的。高度的污染使得仅有少量的晶片能够完成全工艺过程,从而导致成本升高。

器件效能

一个更为严重的问题是在工艺过程中漏检的小的污染。晶片看起来是干净的,但其中的未能检测出来的颗粒,不需要的化学物质,和/或高浓度的可移动离子污染物,可能会改变器件的电性能。这个问题通常是在芯片切割时的电测试中显现出来。

器件可靠性

最令人担心的莫过于污染对器件可靠性的失效影响。小剂量的污染物可能会在工艺过程中进入晶片,而未被通常的器件测试检验出来。然而,这些污染物会在器件内部移动,最终停留在电性敏感区域,从而引起器件失效。这一失效模式成为航空业和国防业的首要关注。

在这一章的余下部分,将讨论对半导体器件生产中产生影响的各类污染的来源、性质及其控制。随着二十世纪七十年代LSI电路的出现,污染控制成为这一工业的根本。从那时起,大量的关于污染控制的认识逐渐发展起来。如今污染的控制本身成为一门学科,是制造固态器件必须掌握的关键技术之一。 在这一章中讨论的污染控制问题适用于芯片生产区域、掩膜生产区域、芯片封装区域和其他一些生产半导体设备和材料的区域。

污染源

普通污染源

洁净室内污染源是指任何影响产品生产或产品功能的一切事物。由于固态器件的要求较高,所以就决定了它的洁净度要求远远高于大多数其它的工业的洁净程度。实际上生产期间任何与产品相接触的物质都是潜在的污染源。主要的污染源有:

1. 空气 2. 厂务设备

3. 洁净室工作人员 4. 工艺使用水 5. 工艺化学溶液 6. 工艺化学气体 7. 静电

每种污染源产生特殊类型和级别的污染,需要对其进行特殊控制以满足洁净室的

49

芯片制造-半导体工艺教程

要求。

空气

普通空气中含有许多污染物,只有经过处理后才能进入洁净室。最主要的问题是含有在空气中传播的颗粒,一般指微粒或浮尘。普通空气包含大量的微小颗粒或粉尘,见图5.5。 微小颗粒(悬浮颗粒)的主要问题是在空气中长时间飘浮。而洁净室的洁净度就是由空气中的微粒大小和微粒含量来决定的。 美国联邦标准209E 规定空气质量由区域中空气级别数来表示。3 标准按两种方法设定,一是颗粒大小,二是颗粒密度。 区域中空气级别数是指在一立方英尺中所含直径为 0.5 微米或更大的颗粒总数。一般城市的空气中通常包含烟,、雾、气。每立方英尺有多达五百万个颗粒, 所以是五百万级。随着芯片部件尺寸的更新换代,不断提高的芯片灵敏度要求越来越小的颗粒。4

图示5.6表显示了标准 209E 规定的颗粒直径与颗粒密度的关系。图示5.7 列出了不同环境下洁净度级别数与对应的颗粒大小。联邦标准209E规定最小洁净度可到一级。因为 209E 以 0.5 微米的颗粒定义洁净度,而成功的晶圆加工工艺要求更严格的控制,所以工程技术人员工程师们致力于减少10级和1级环境中0.3 微米颗粒的数量。例如: Semetech/Jessi 建议 64 兆内存加工车间为 0.1 级,256 兆为 0.01 级。5

图5.5 空气中颗粒的相对尺寸 (微米) Aerosols浮质 Metallurgical Dust金属尘埃 Cement Dust水泥尘埃

Tobacco Smoke烟尘 Insecticide Dust杀虫剂微粒 Human Hair Diameter人类毛发的直径

图5.6 空气洁净等级标准 209E Proposed Federal Standard 209E 建议联邦标准 209E

Airborne Particulate Cleanliness Classes for Clean Rooms and Clean Zones 洁净室与洁净区的空气颗粒洁净等级 Class1, 10, 100, 1000, 10000, 100000

一级,十级,百级,千级,万级,十万级 Particles size (micrometer) 颗粒尺寸 (微米)

Class limits in particles per cubic foot of size equal to or greater than particles sizes shown

洁净等级是指一平方英尺中颗粒尺寸等于或大于图中所示颗粒尺寸

*The class limit particle concentrations shown are defined for class purposes only and do not necessarily represent the size distribution to be found in any particular situation 图中所示洁净等级所指颗粒含量只用于等级定义,并不代表任何特定环境下的尺寸分布

50

本文来源:https://www.bwwdw.com/article/095w.html

Top